Simulating Designs with Lower-Level Qsys Systems

As described in AN 351: Simulating Nios Il Embedded Processor Designs, Qsys and Nios Il Software Build

Tools (SBT) for Eclipse can automatically generate an RTL simulation environment for Nios Il designs in
which the Qsys system is the top level entity. This guide shows to modify the automatically generated
simulation files to accommodate designs in which the Qsys system is not the top level. This guide is
presented using Verilog, but the process is similar for designs using VHDL.

Before You Begin

This guide assumes that you have prior experience using Qsys as well as a familiarity with Nios Il SBT and
the ModelSim simulator. In order to simulate the Nios Il design using the instructions in this guide, you
must have the following software installed:

e The Quartus® Il software version 11.0 or later
e ModelSim-Altera Edition version 6.6d or higher
o Nios Il Embedded Design Suite version 11.0 or later

Design Description

As shown in Figure 1, the top level module of the example design used in this guide instantiates a Qsys
system (niosii_system) and a simple counter module (counter). The output PIO of the Qsys system
(output_pio_export) is a one-bit port that drives the enable input of the counter module.

niosii_system:niosii_system_inst counter.counter_inst
clk
clk e clk_clk
r output_pio rt enable count[7. —-—-—DD .
rst_n [reset_reset_n e - e ui(z..0]

Figure 1 — The Qsys system and counter module instantiated by the top level module

The example software running on the Nios Il system demonstrates interactions with hardware outside
the top level module (the JTAG UART) and with a module below the top level (the counter module). As
shown below, the example software enables the counter while a Hello World message is sent to the
console via the JTAG UART.

http://www.altera.com/support/examples/nios2/exm-simulating-niosii.html

int main ()

{

IOWR (OUTPUT PIO BASE, 0, 0xl); // Enable the counter

printf ("Hello from Nios II!\n"); // Send Hello World to the JTAG UART
IOWR (OUTPUT PIO BASE, 0, 0x0); // Disable the counter

return O;

Generating the Simulation Files

This section summarizes the process of generating the simulation files. A more detailed explanation can
be found in AN 351: Simulating Nios Il Embedded Processor Designs. The necessary modifications to
these files are described in the next section, Modifying the Simulation Files.

Setting Up and Generating the Simulation Environment in Qsys

1.

5.

Download the lower_level_qgsys.zip design example listed in the Downloads section below.
Extract the design example to a new directory. This directory will be referred to as <project
directory> throughout the remainder of this guide.

Start the Quartus Il software, and select File > Open Project. Browse to <project directory>,
select the lower_level_qgsys.qpf file, and click Open.

Open Qsys by selecting Tools > Qsys. Open the niosii_system.gsys file.

e The design example used for this guide is a complete Qsys system. If you are using your
own Qsys design, ensure that your design is complete before you start to generate
simulation models.

On the Generation tab, set the following parameters to these values.

e Create simulation model—None

e Create testbench Qsys system—Standard, BFMs for standard Avalon interfaces.

e Create testbench simulation model—Verilog

e Create HDL design files for synthesis—Turn off

e Create block symbol file (.bsf)—Turn off

Click Generate. Save the system if prompted.

Creating the Nios II Software
The software used for this guide will activate the counter module by writing to the output PIO and will
send a Hello World message to the console via JTAG UART. To create and build the software project,

perform the following steps:

1.

Open Nios Il SBT for Eclipse version 11.0 or later, and select File > New > Nios Il Application and
BSP from Template.

Select the SOPC Information File by browsing to <project directory> and selecting
niosii_system.sopcinfo.

For Project Name, type “lower_level_gsys”.

Select “Blank Project” from the Templates options.

http://www.altera.com/support/examples/nios2/exm-simulating-niosii.html

5. Click Finish.

6. Next, import the lower_level_gsys.c source file into the software project by using the Eclipse
Import dialog or by copying the source file directly to the software directory:

<project directory>/software/lower_level_qsys/

7. To build the project, right-click on “lower_level_gsys” in Project Explorer and select “Build
Project” (or select “Clean Project” if you copied the source file directly into the software
directory).

8. When the project has finished building, right-click again on “lower_level_gsys” in Project
Explorer, and select Run As > Nios Il ModelSim. This command will start the ModelSim software
and create the remaining simulation files.

Modifying the Simulation Files

At this point, the Qsys and Nios Il SBT software have automatically generated simulation files necessary
for simulating designs in which the Qsys system is the top level entity. In order to simulate other types
of designs, two of these automatically generated files need to be modified: the testbench source file and
the ModelSim simulation script.

Modifying the Testbench Source File

This file should be edited to correctly reflect the hierarchy of your design. The instantiation of the Qsys
system should be removed and replaced by an instantiation of the correct top level module. Whether or
not other modules instantiated in the testbench file, such as bus functional models (BFMs), should be
removed depends on the usage of those modules. In general, you should remove BFM modules that
represent components that should exist below the top level module — for example, a PIO from the Qsys
system that connects to another module under the top level. You should not remove BFM modules
that represent connections to the top level — for example, the clock and reset BFMs.

For this guide, the testbench file, niosii_system_tb.v, is located in:
<project directory>/niosii_system/testbench/niosii_system_tb/simulation
In general, this file will be located in:
<project directory>/<Qsys system name>/testbench/<Qsys system name>_tb/simulation

For this example design, you can either make the modifications to the test bench file yourself, or you
may copy the completed code into the testbench file from the niosii_system_tb.v file, which is located
in <project directory>/modified_files directory.

To make the modifications, open the automatically generated testbench file in an editor of your choice
and complete the following steps:

1. Remove or comment out the instantiation of the Qsys system as shown below:

// Removed instantiation of the Qsys system

// niosii system tb niosii system inst niosii system inst (

// .clk clk (niosii system inst clk bfm clk clk),

// .reset reset n (niosii system inst reset bfm reset reset),
// .output pio export (niosii system inst output pio export)
/1)

2. Add the instantiation of the correct top level module with appropriate connections to the clock
and reset. The top_level_out wire has been added in this case to connect to the output port of
the top level module.

wire [7:0] top level out;

top_level top level inst (

.clk (niosii system inst clk bfm clk clk),
.rst n (niosii system inst reset bfm reset reset),
.out (top level out)

3. Remove or comment out the instantiation of the PIO BFM and the wire that connected the BFM
to the Qsys system:

// wire [7:0] niosii system inst output pio export;

// niosii system tb niosii system inst output pio bfm niosii system inst output pio bfm (
// .sig _export (niosii system inst output pio export) // conduit.export

/1)

4. Save the niosii_system_tb.v file.

Modifying the ModelSim Simulation Script

The ModelSim simulation script contains Tcl commands that set up the simulation environment and
provide several command aliases for quickly performing tasks such as compiling source files and
elaborating the top level design. The unmodified simulation script is automatically executed when Nios
I SBT invokes ModelSim. The simulation script will need to be edited and re-executed as described
below.

Important note: Two simulation scripts with identical names are generated in different directories
while setting up the simulation environment. Make sure you are editing the correct file.

For this guide, the correct simulation script, msim_setup.tcl, is located in:
<project directory>/software/lower_level_qsys/obj/runtime/sim/mentor

and in general will be located in:

<project directory>/software/<Nios Il SBT project name>/obj/runtime/sim/mentor

For this example design, you can either make the modifications to the simulation script file yourself, or
you may copy the completed code into the simulation script file from the msim_setup.tcl file, which is
located in <project directory>/modified_files directory.

Important note: In the file paths throughout the completed simulation script, <project directory> is
set as “c:/lower_level_qgsys/”. If you are using a different project directory, use "Find & Replace" to
replace "c:/lower_level_qgsys/" with your project directory.

To make the modifications yourself, open the automatically generated ModelSim simulation script file in
an editor of your choice and complete the following steps. Again, make sure you are editing the correct
simulation script.

1. Inthe “Compile the design files in correct order” section, add vlog commands to compile the
additional source files, as shown below:

Compile the design files in correct order
alias com {

vlog -sv "C:/projects/lower level gsys/niosii system/testbench/niosii system tb/simulation
/submodules/verbosity pkg.sv"

vlog -sv "C:/projects/lower level gsys/niosii system/testbench/niosii system tb/simulation
/submodules/altera avalon clock source.sv"

vlog "C:/projects/lower level gsys/niosii system/testbench/niosii system tb/simulation
/submodules/niosii system tb niosii system inst.v"

CHANGE: compile additional design files after the Qsys system, before the test bench
vlog "C:/projects/lower level gsys/niosii system/testbench/niosii system tb/simulation
/additional modules/counter.v"
vlog "C:/projects/lower level gsys/niosii system/testbench/niosii system tb/simulation
/additional modules/top level.v"

END OF CHANGE

vlog "C:/projects/lower level gsys/niosii system/testbench/niosii system tb/simulation
/niosii system tb.v"

When modifying the simulation script for your own design, make sure that your source files are
compiled in the correct order. In ModelSim, a file containing the definition of a module must be
compiled before a file containing instantiations of that module. In general, lower levels of your
hierarchy should be compiled first, and your testbench should be compiled last.

2. Inthe “Elaborate top level design” and “Elaborate the top level design with novopt option”
sections, add the hierarchy that is above the Qsys system before “SSYSTEM_INSTANCE_NAME”,
as shown below.

Important note: Do not put a slash between the added hierarchy and the
SSYSTEM_INSTANCE_NAME variable.

CHANGE: add the hierarchy that is above the Qsys system before $SYSTEM INSTANCE NAME.
DO NOT put a slash between the added hierarchy and the $SYSTEM INSTANCE NAME variable.

Elaborate top level design
alias elab "
vsim -t ps \
G/$TOP_LEVEL NAME/top level inst$SYSTEM INSTANCE NAME/niosii system inst/ram/INIT FILE=\"C:/proje
cts/gsys_in lower hierarchical level example/software/hello world gsys_in lower hierachical level
_example/mem init/ram.hex\" \

-L work -L altera ver -L lpm ver -L sgate ver -L altera mf ver -L altera Insim ver -L
cycloneiii ver S$STOP LEVEL NAME

Elaborate the top level design with novopt option
alias elab debug "
vsim -novopt -t ps \
G/$TOP LEVEL NAME/top level inst$SYSTEM INSTANCE NAME/niosii system inst/ram/INIT FILE=\"C:/proje
cts/gsys in lower hierarchical level example/software/hello world gsys in lower hierachical level
_example/mem init/ram.hex\" \

-L work -L altera ver -L lpm ver -L sgate ver -L altera mf ver -L altera lnsim ver -L
cycloneiii ver $TOP LEVEL NAME

"

END OF CHANGE

You do not need to list the test bench in the hierarchical description. TOP_LEVEL_NAME is the
testbench module.

3. Finally, to ensure that you have edited the correct simulation script, add an echo command at
the end of the simulation script file to print a confirmation message in the transcript window, as
shown below:

Confirm that this is the correct simulation script
echo
echo “You edited the correct simulation script.”

4. If you are modifying the simulation script for your own design, you may need to add commands
to compile libraries. These commands should be added to the “Create compilation libraries”
and “Compile device library files” sections. For this example, no modifications need to be made
to these sections. For information on compiling libraries, see the Mentor Graphics ModelSim

and QuestaSim Support section of the Quartus || Handbook.

5. Save changes to the msim_setup.tcl simulation script.
6. Inthe ModelSim Transcript window, re-execute the simulation script by typing “do
msim_setup.tcl” and pressing enter.

http://www.altera.com/literature/hb/qts/qts_qii53001.pdf
http://www.altera.com/literature/hb/qts/qts_qii53001.pdf

7. Finally, recompile the design files and elaborate the top level design by typing “Id” and pressing
enter. You may optionally use the “Id_debug” command instead to use the -novopt option for
vsim.

Running the Simulation

Now that the testbench file and the ModelSim simulation script have both been edited, load signals into
the waveform viewer by selecting File > Load... and browsing to the <project directory>/wave.do
waveform script file. Begin the simulation by typing “run 2 ms”. As shown in Figure 2, the counter is
enabled while the Hello World message is sent to the console.

[ModelSim ALTERA 50 e |

File Edit View Compile Simulaste Add Wave Tools Layout Window Help

D@ & 1B&I2 0 BE %M]@ R 4 e NS DR OB W] 50K ,x‘\

LWWJ‘ Couretayout frrzcorems A MEsnip]acaantorrrit | A299] > @

e

s viave HeA =

4 readyfordata

2000000000 ps |

2 Transcript Hat x|
+ [0: nicsii_system Th.nicsii_system inst_clk bfm._hello: - & / B
a 0: niosii_system th.niosii_system inat_clk_bfm._hello: - C

B 0

N o niosii_system th.niosii_system inst_reset bfm._hello: - Rello from altera reset_source

[niceil system tb.niceil system inst_reser helle: -

a niosii_system_th.niosii_systen_inst_reset, -

o niosii_system tb.niosii_system _inst_reset_bfm._hello: - AS

a niosii_system th.niosii_system inst_reset bfm. _hello: -

B a

a 0: niosii_system_tb.niosii_system_inst_reset_bfm.reset_assert: Reset asserted

+ ss0000 0: niosii_system Tb.niosii_system inst_reset_bfm.Teset_deassert: Reser deasserced

Hello from Nies IT!

Vs 5> j

[Now: 2msDelta: 3 [sim: friosi_system_to 1473850 176 ps 10 1975235720p

Figure 2 - Simulating the lower_level_qsys design

Additional Resorces
o AN 351: Simulating Nios || Embedded Processor Designs
o Mentor Graphics ModelSim and QuestaSim Support — Quartus Il Handbook, Vol. 3, Ch. 2

http://www.altera.com/support/examples/nios2/exm-simulating-niosii.html
http://www.altera.com/literature/hb/qts/qts_qii53001.pdf

