DSPBA_Features

Often we have features which are either not fully tested or benchmarked, or for which in some case the default values chosen may not be appropriate. For these we often try to allow some back-door mechanism to both allow us to switch or vary these across design sweeps, or allow expert users to tweak. We do this via workspace ‘DSPBA_Features’ variables. These have default values. Not defining a workspace variable, means the effect defaults. Defining the variable and setting it to a value different to the default will have an affect. The syntax is always DSPBA_Features.<variable name> = <value>
To use these flags, you have to type them at the MATLAB command line, then press the Simulink “simulate” button to regenerate the VHDL model.
For example, Ternary Adder Trees are not used by default, as their use is not always beneficial. By default we create binary adder trees – but in some cases – for example a 3 input adder in a tight loop ternary adders might be required to schedule the design. To try them out, define

DSPBA_Features.CreateTernaryAdderTrees = true
Similarly whether the outputs of multipliers are registered depends on you target fMax. The currently chosen default for Stratix III & Stratix IV is 300Mhz – i.e if you set a clock rate of above 300Mhz the multiplier outputs will be registered. This has a big resource impact however, and may not be necessary in your particular design. You can control this threshold using the multOutputRegisterThreshold variable. For example if you have an fMax target defined as 320, and think your design does not need mult outputs registered, then you can use the variable to reset the threshold higher to get unregistered outputs, e.g.

DSPBA_Features.multOutputRegisterThreshold = 350

… or conversely you could set it lower to have mult outputs registered even at target clock rates below 300.

	Type
	Name
	Default
	Effect

	Beta Features

	Bool
	CreateTernaryAdderTrees
	false
	Use ternary adder trees (Beta feature)

	Bool
	PipelineTernaryAdders
	true
	Pipeline the ternary adders, if used (Beta Feature)

	Bool
	NewScheduler
	false
	ModelIP blocks generally have a simple ‘As Late As Possible (ALAP)’ scheduling rule when placing registers for pipelining – meaning the pipelining registers are generally put before the functional units. An alternative, simple method is to greedily choose either ALAP or ‘As Soon As Possible’ (ASAP). This sometimes reduces register count in FIRs, sometimes increases it – overall it ends up making no noticeable difference on average, so hasn’t been implemented. You may want to try it out however, to see if it brings improvement in a particular FIR you’re trying to reduce resources on. This is pending the ideal solution of using the LPP solver to optimize pipelining insertion correctly.
Many improvements have been made to the FIR over recent releases, so use this with caution.

	Thresholding & optimizations

	Integer
	PipelineMuxThreshold
	1 on SV

3 otherwise
	A value of N forces MUX registering for all muxes with N or more inputs. (with all MUXes with less than N inputs being combinatorial)

	Bool
	FIR_high_speed_adder_tree
	false
	Force creation of high-speed adder tree in FIRs if true. Else (current) rule is to use this only above 300MHz for Stratix II and above 350 MHz for Stratix III & IV

	Bool
	IdentifyMultAdds
	true
	Attempt to group together multipliers and adders in the optimization stages

	Bool
	Register_Mult_Add_Inputs
	true
	Register of mult_add inputs

	Double
	distRamThresholdfMax_StratixIII

	300.0
	These apply to Stratix III and Stratix IV.

For MLABs, if the target fMax is sufficiently high(+), long (*) delays should either be split into a chain of smaller delays or changed to M9Ks. This is to avoid the memories being implemented as multiple blocks with a mux

on the outputs. This has a resource cost, so only becomes useful if we're trying to reach high fMax, where the multiple blocks + mux may otherwise be the critical path.

(+) What do we mena by sufficiently high? By default we leave MLABs alone if the target Fmax is below the threshold of 300 Mhz – this can be overwritten using distRamThresholdfMax_StratixIII

(*) What to we mean by long? In this case we use M9Ks instead of MLABs if the length is greater than 32. This value of 32 is a rather arbitrarily decided default, and this can be changed by the second feature variable distRamThresholdDepth_StratixIII

(The whole thing should really be timing-driven, and we hope to make improvement on this in 10.0).

	Double
	distRamThresholdDepth_StratixIII
	32.0
	

	Bool
	MLABS_Unregistered_Outputs
	true
	Allow MLABs to be created without output registers below the current Fmax threshold for this optimization (275 MHz)

	Bool
	ShortenFoldedDelays
	true
	When folding primitive subsystems, should we try to shorten delay chains by driving enables on single delays

	Double
	multOutputRegisterThreshold
	300.0
	Set the Fmax threshold at which multiplier outputs are registered (for families later than Stratix II)

	Bool
	OptimizeConstantMults
	true
	Should we attempt to optimize constant multipliers.

	Bool
	OptimizeConstantMultAdds
	true
	Should we attempt to optimize constant multiply-adds.

	Bool
	allowSingleBitwidthMLABS
	true
	Should we allow MLABs for single bit-width, or (if false) push these either to registers or M9Ks?

	Int
	FPOpt
	1
	Optimize floating point multipliers, adders and substractors (this should be bool as accepted values are 0 or 1)

	Int
	FPDotOpt
	1
	Optimize floating point scalar products (this should be bool as accepted values are 0 or 1)

	Double
	delayChainDepthThreshold
	1
	How long should a delay chain be before it is implemented in memory, rather than registers? Default is that delays 1 deep or less will be forced into registers. (Matlab only deals with doubles or bools. Really an intege value is entered here, obviously).

	Test-benches

	Bool
	stopOnChannelOutMismatch
	true
	In the generated ATBs any mismatch on primitive ChannelOut or ModelIP outputs stops the test-bench execution with a failure. Setting this to false will create test-benches that just warn on mismatches.

	Bool
	stopOnGeneralOutMismatch
	false
	For general purpose outputs we would just warn on mismatches – as we can’t sync these to a valid.

This controls whether to warn (continue) or fail (stop)

	Double
	ATBsFloatMismatchTolerance
	0.0
	Tolerance on single precision automatic Simulink / HDL test-bench comparisons

	Double
	ATBdFloatMismatchTolerance
	0.0
	Tolerance on double precision automatic Simulink / HDL test-bench comparisons

	Double
	ATBsFloatMismatchZeroTolerance
	0.0
	Tolerance on single precision automatic Simulink / HDL test-bench comparisons when comparing to exact zero value

	Double
	ATBdFloatMismatchZeroTolerance
	0.0
	Tolerance on double precision automatic Simulink / HDL test-bench comparisons when comparing to exact zero value

