bytestream Example

Using System Console to test and
analyze streaming peripherals.

Objective

m These slides attempt to illustrate how quickly and
easily the System Console environment can be
assembled into a test platform for analysis and
testing of streaming components.

m The test platform for all of these examples is the
developed on the NEEK development board,

however, they could easily be ported to any other
board.

A Problem

m How do you test and validate the functionality of

DSP filter algorithms in a typical design?

— At speed...

— Inside the FPGA...

ADC

clock

data

>

DSP
FILTER

FPGA

DSP
FILTER

DSP
FILTER

clock

data

vV Vv

DAC

A Solution

m Use System Console to source data into your design and sink results from it.

m Please find documentation on the JTAG Stream interface shown below in the
Quartus Il Version 8.0 Handbook, Volume 5: Embedded Peripherals, Chapter
10.

m Please find documentation on System Console in the System Console User
Guide.

FPGA
u SNK [«
>)_>' JTAG
O | STREAM
SRC
System
4_
Console
DSP DSP DSP
p — —
| | FILTER FILTER FILTER

A Solution

m This model could even be used to perform unit
testing of individual blocks.

FPGA
u SNK [«
> :(_>' JTAG
O | STREAM
SRC
System
4_
Console
N DSP

| | FILTER

The Avalon ST Interface

A data streaming interface protocol
supported within SOPC Builder.

Avalon ST Basics

m The simplest Avalon ST interface consists of a data
path transferring data from the source interface to the
sink interface, synchronous to the clock.

m You can add an enable strobe to the interface called
“valid”. The valid strobe is driven by the source to the
sink to indicate that the source is driving the next data
word onto the interface. If a source and sink only share
a valid strobe in common, then the valid strobe acts as
an enable, and data is clocked from the source to the
sink on clocks that have valid asserted. The valid
strobe operates like a forwarding enable strobe into the
data path.

m You could alternatively add and an enable strobe to the
interface called “ready”. The ready strobe is driven by
the sink to the source to indicate the sink is accepting
the next data word from the interface. If a source and
sink only share a ready strobe in common, then the
ready strobe acts as an enable and data is clocked
from the source to the sink on clocks that have ready
asserted. The ready strobe operates like a back
pressuring enable strobe back thru the data path.

m You can add both a “valid” and a “ready” strobe to the
interface as well. The ready strobe can have an
attribute called ready latency which can delay the data
transfer clock by a specified latency, and the
coordination of the valid and ready strobes must then
account for this ready latency, but this goes beyond the
scope of this discussion.

Data Only
AvalonST |« g;sk » AvalonST
Source Sink
valid Only
clock
AvalonST *data 7 AvalonST
Source valid Sink
ready Only
clock
AvalonST *Gata 7 AvalonST
Source < ready Sink
valid and ready
clock
B data
AvalonST —T:5 AvalonST
Source _ready Sink

Avalon ST Basics

m Avalon ST interfaces can also add more
complexity, like channel information, error
Information, etc. The complete scope of the
Avalon ST interface is documented in the Avalon
Interface Specification.

Avalon ST and System Console

If your DSP filter block has some form of
Avalon ST enable strobe on it as shown
on the right, then you could connect it
directly to the JTAG Stream interface
that connects to the system console
environment, as shown below.

Since the JTAG Stream component has
valid and ready strobes on it to pace the
data thru the interface, streaming data
from the relatively slow JTAG interface
thru the DSP filter block and back can
by totally synchronized by the ready and
valid strobes.

FPGA
< SNK [¢———
S| JTAG DSP
Z | STREAM FILTER
SRC———

valid Only
clock
AvalonST *data__ 7 AvalonST
Source valid Sink
ready Only
clock
AvalonST *Gata 7 AvalonST
Source < ready Sink
valid and ready
clock
B data
AvalonST —T5 AvalonST
Source ready Sink
<

Avalon ST and this example.

m For purposes of this example, we will focus on the simplest of these

10

Avalon ST interfaces, data only, so there will be no ready or valid
strobes to provide enable queues to the interfaces.

This is a perfectly valid way to use the Avalon ST interface. The role
of ready and valid in this case are described in the Avalon Interface
Specification as follows:

— Ready — Sources without a ready input cannot be backpressured, and sinks
without a ready output never need to backpressure.

— Valid — Sources without a valid output implicitly provide valid data on every cycle
that they're not being backpressured, and sinks without a valid input expect valid
data on every cycle that they are not backpressuring.

Though this is a very simple streaming interface consisting of data,
synchronized to a clock, it also presents a challenge to interface with
over the relatively slow JTAG interface, since there are no enable
signals available to pace the data thru the components.

Data Only

clock

AvalonST |« 5 » AvalonST
ata

Source » Sink

Synchronizing the Stream

For components with no synchronization
strobes.

Creating a Synchronization GATE

m In the simplest case where the DSP filters only uses clock and data, there’s a bit of infrastructure needed to

facilitate proper operation at speed within the FPGA.

m A back pressure “gating” component is inserted as shown below to allow an ingress FIFO to accumulate a
specified amount of data. An Avalon Master polls the Avalon Slave on the ingress FIFO to detect the fill level.

m Once the fill level is achieved, the GATE opens and dumps the data thru the DUT at the clock rate of the DUT.

m The egress FIFO is a bit bigger than the ingress data such that the pipeline depth of the DUT is accounted for,
and the GATE component also ensures that the egress FIFO is only filled with data after the ingress GATE has

opened.

m System Console may now be used to fill the ingress FIFO with input and extract the results from the egress FIFO.

JTAG
STREAM

OV.l

FPGA
SNK[<+— EGRESS FIFO PIPE FIFO Bp
GATE
SRC—»INGRESS FIFO
S M

DSP
FILTER

12

Running at speed.

In this example the clock domain of the JTAG system
console infrastructure Is placed in a slower clock
domain, and the ingress and egress FIFOs are created
from DCFIFOs which accomplish the clock domain
crossing into the DUT clock domain.

OV.l

FPGA
JTAG CLOCK DOMAIN DUT CLOCK DOMAIN
SNK<+— EGRESS FIFO *=— PIPE FIFO [*—]
JTAG : BP DSP
STREAM ' GATE FILTER
SRC—»INGRESS FIFO > —>
’ S M

13

A more complete solution

We can create a small SOPC system like this to provide the streaming channel as well as system

identification and build identification thru a JTAG Master interface.

The JTAG Master is also given access to a slave on the GATE component which allows system

console to adjust the fill trigger level for the GATE component.

Please find documentation on the JTAG Master interface shown below in the Quartus Il Version

8.0 Handbook, Volume 5: Embedded Peripherals, Chapter 12.

At this point the user can simply stitch their build ID and DUT blocks into the SOPC system in a top
level module. Optionally, the user could build these blocks right into the SOPC system itself.

FPGA

. SNK{+— EGRESS FIFO «— PIPE FIFO [«]
— JTAG BP DSP
:G’S STREAM GATE FILTER

SRC—INGRESS FIFO > —

S M S
A
[
— JTAG
<
:5 MASTER M BUILD _ID
SYSID

14

Separated System Approach

m This picture illustrates the approach of keeping the users modules
external to the SOPC system.

m |n this case the user would create the SOPC system shown below and
then manually stitch their components into the top level HDL module
that SOPC Builder generates.

FPGA
- SNK|«— EGRESS FIFO [«— PIPE FIFO [¢—
S| JTAG BP DSP
Z | STREAM GATE FILTER
SRC—INGRESS FIFO > >
S M] [S
*
[
S| JTAG
<
> | \asTER M BUILD ID
SYSID SOPC System

15

Integrated System Approach

m This picture illustrates the approach of placing the users modules inside the

SOPC system.

m |n this case the user would create the SOPC system shown below and import
their HDL component into SOPC Builder and place them directly into the

system.

There would be no manual manipulation of the top level modules in this case.

FPGA
- SNK|«— EGRESS FIFO [«— PIPE FIFO [¢— ——
S| JTAG BP DSP
Z | STREAM GATE FILTER

SRC—INGRESS FIFO > BN

S M] [S
*
[
S| JTAG
<
> | \asTER M BUILD ID
SYSID SOPC System

16

Integrated vs Separated SOPC Approach

17

There is no advantage to either design flow from an SOPC Builder or
Altera tools perspective, although the integrated approach requires
potentially less manual intervention by humans.

Each of the examples should produce exactly the same result in
hardware, assuming that the manual stitching is done properly in the
separated approach.

In each flow, during a component’s development cycle, you could edit
the source code and recompile the design without requiring SOPC
Builder generation as long as you are not changing the SOPC
Interface ports, masters, slaves, sources and sinks.

In either case, if you adjust any of the SOPC interface ports, you will
be required to regenerate the SOPC system to account for the
alterations in the new revision.

Generally speaking, personal preference or user design flow
requirement will generally determine which approach is best for any
given user environment.

Creating the System In
SOPC Builder

The integrated approach.

This Is the system we want to create.

o Altera SOPC Builder

test_sys_sopcsopc (0 bytestream_esample’ integrated _hw'best_sys_sopcsopc)

“Targel Mw
Dervice Famity | Cycioen 8 = e | Source | [
o ik pllen =0
Tant_cik plllct [0
| Lize Conhections | Mo Fame [Descripton | cock Base End o |
= Bl console_master HITAG o Avalon Master Bridgs
i 7 | masier | Avnion Memory Mapgped Masler ‘sbove_cil
i o Memory Contraters. | @ B wysia Systom D Perghetsl
= - I- y control_ghinves | Brmion Memory Mapped Siave ‘show_ciik w0 O0E0 | Oxd000000T
: e 5 | S baild_id ey kst
T I~ * 1] [Avenion Memory Magped Sivvn [mbaw_cik oxO0000
(5] Wides i irreges Processing ~ £ pll_master Em o
m Lasenlon oy Maggsted Master el
= | | |E pa L | |
| 1 !.mmw-ru-pmm clk ¢ Gw0OROS0RD |(DxO000001E
(=3 B conuole_sliaam (Avion ST JTAG inbertacs
e |Avnion Streaming Source ‘mbove_elk
— | L AN Sir ot Sank
= B ingress _fio Union-ST Dusl Clock FFO |
—H oul_cor LAcenion Memory Magpsed Sl Tarwt_elli el 0B08080 |OxG0000007
I whilon Streaming Snk ‘mlow_cik
| oul [Avvenion Streaming Source
= Bl ngrens_fis {edon-5T Duul Clock FFO
T n Avmion Stresming Snk Tarst_cilk
< ou AvRion Sireasing Fource ahow el
F# Bl egress_pipefine_fifo | Avalon-ST Dusl Clock FFO |
~t—+ i | Avenion Streaming Sink Hust_cie
< out |Anion Sireaming Source Tast_cil
= B pae |stream_back_pressure_gabe
rgrerE_ ik [Awnion Sirnmaming Sink Tarwt_ele
| NgresE_Sro |Anion Stresming Source
— BgrEsE_snk | Asenion Sireaming Sak
™ £ BOEEES_BIC Awnion Streasing Source
e ml Aveion Mamory Mapged Masler
. * 1] oo sy Iagipsed Shirvn OwDRngnss OxO0ODOOO0E
" ‘ | |8 dut e .
— wn {Avnion Strensing Sink Jot_cik
—i source | Anion Streaming Source]
&1 4 I Femye l Enit | i WovE U I . P D] Address Map. I Eiter_ I

ﬂ Error: conecla_siream.sscingress _fifodn The sirk has o resdy sigral of 1 b, bl the sowrce doas nol

) Brror dut.sourceigate.egress_snk Tre sink has o vakd sigrad of 1 s, Dol tre source does nof,
n Error: gatedngress_sscidutsink: The souros has o vabd sigead of 1 bis, bl tre sk does not

1l

o Prev

e | ven |

Net b | Generate |

—
ﬂ Error consele_stream.ssrcingress _fifodn The sources has 1 symibols per beal, while Bne sink has 2. Contider noering & Siresmang Duts Format Adspler. Adapters can be sutomaticaly neerted with System - inserl

a Eiror agress_(fo.cuiconsole_stroamusink The source bk I dymbols por baal, witds e 390k hag 1. Congxded Fisning o Streaming Daba Foimal Adspber. Adapters can Db stomalicaly naered with System » lee

_-|

19

Our Custom Components

20

In this example our DUT component will simply invert
the data that it receives on the input stream and pass
It to the output stream.

The streaming component that we want to test,
my_dut, as well as the my_build_id peripheral are
custom HDL components that we should import with
the SOPC Builder Component Editor to get started.

This process is described in the Quartus Il Version 8.0
Handbook, Volume 4: SOPC Builder.

The stream_back_pressure_gate peripheral is already
created for us to use as the GATE peripheral shown in
the previous block diagrams.

* Altera SOPC Builder

I Create new component...
ARM Cortex-M1 Processor
my_build_id <—————
my_dut <———————
Mioz |l Processor
stream_back_pressure_gate

+-Bridges and Adapters
+-Interface Protocals

+-Legacy Components
+-Memories and Memory Contrallers
+-Peripherals

+-PLL

+-LSE

+-ideo and Image Processing

The integrated system.

m The following slides will walk thru how this system is put

21

together and why it is put together this way.

-

[l

¥ r|\ & l & bl L) l J\ l i T 1 o e L e el G

=

=

console_master
master
sysid
control_slawve
build_id
=0
pll_master
mil
pll
=1
console_siream
src
sink
ingress_fifo
out_csr
in
ot
egress_fifo
in
ot
egress_pipeline_fifo
in
ot
gate
ingress_snk
ingress_src
egress_snk
Bgress_src
mill
=0
dut
sink
SOURCE

JTAG to Avalon Master Bridge
Avalon Memory Mapped Master
System ID Peripheral

Awalon Memory Mapped Slave
iy _bwaild_id

Avalon Memory Mapped Slave
Cuarmiry Master

Awalon Memory Mapped Master

PLL

Avalon Memory Mapped Slave
Awalon-ST JTAG Interface
Awalon Streaming Source
Avalon Streaming Sink
Avalon-ST Dual Clock FIFO
Avalon Memory Mapped Slave
Avalon Streaming Sink

Avalon Streaming Source
Awalon-ST Dual Clock FIFO
Avalon Streaming Sink

Awalon Streaming Source
Avalon-ST Dual Clock FIFO
Avalon Streaming Sink

Ayalon Streaming Source
stream_back_pressure_gate
Avalon Stresming Sink

Ayalon Stresming Source
Avalon Stresming Sink

Ayalon Stresming Source
Ayalon Memory Mapped Master
Ayalon Memory Mapped Slave
iy _clut

Awalon Stresming Sink

Ayalon Streaming Source

slow_clk
slow _clk
slow_clk
clk

clk

slow _clk
fast_clk
slow_clk
fast_clk
slow _clk
:fnst_l:lh
fast_clk
fast_clk
fast_clk

0x0D0D0000C

0x00000007

00000000k

0x0000001 £

000000007

0z 0000000 £

The memory mapped components.

= In order to facilitate system identification as well as run time manipulation of the gate
component a small memory mapped section is created in this design to allow the
System Console to peek and poke thru the JTAG Master into the memory mapped

slaves.

m The sysid peripheral provides a 64 bit system identification value that is updated each
time the SOPC system is generated. This can be validated at run time from the
System Console environment and provides a useful debug assistance by knowing
what revision of a hardware design is programmed into the FPGA.

m The build_id peripheral is a user supplied custom component that has the same
motivation of the sysid peripheral but since it is under user control, the user may
manipulate the value of this ID at will, regardless of the state of an actual SOPC
system regeneration. For instance if the user wishes to make source code changes to
their DUT peripheral, but does not require SOPC system regeneration, they could
modify the value of this build ID to account for the updated revision in their hardware.

m The gate peripheral provides a slave interface that allows us to query and change the
FIFO fill trigger level that the gate component uses to trigger the gate opening.

EH console_master

JTAG to Avalon Master Bridge

master
B sysid
control_slave
B build_id
=0

B gate
s0

22

iAvalon Memory Mapped Master

slow_clk

System ID Peripheral

Avalon Memory Mapped Slave
my_buibd_id

Avalon Memory kMapped Slave

stream_back_pressure_gate
Avalon Memory Mapped Slave

slow_clk 000000000 | OxO00000007

slow_clk 000000008 0x0000000b

Q0000000c | Ox0000000 £

System Clocks

23

We place a PLL into the system to create the clocks that we desire.

The PLL takes the 50MHz clock in from the onboard oscillator, “clk”, and generates a
“slow_clk” of 25MHz for our System Console infrastructure as well as a “fast_clk” of
190MHz for our DUT infrastructure.

In the 3C25C8 device on the NEEK board, the DCFIFOs seem to be the limiting factor

for Fmax of around 195MHz, so that drove the 190MHz selection for the DUT clock
domain.

i Mame I SOUrce I MHZ I
ek External 50.0

isluw_clk pll.c0 250

fast_clk pll.c1 15900

We place a “Dummy Master” in the design and connect it to the PLL slave interface for
two reasons.

First, there is nothing practical that can be done with this slave interface, so we simply
need a master to terminate it with.

Second, with a dummy master we can place it in the same clock domain as the PLL
slave and thus save an auto generated clock adapter from being created for us.

B pll_master Cuarmrmry Master

{Lvalon Memaory Mapped Master
= pll PLL
| Avalon Memory Mapped Slave clk 000000000 |0:x0000001 £

The ingress stream path.

m You can see the ingress stream path in the picture below. All of the source interfaces
are highlighted which in turn highlights a blue path to their respective sink
counterparts.

m The stream begins at the console stream peripheral as a 1 symbol per beat, 8 bit per
symbol source interface with a valid strobe.

m The stream then enters the ingress_fifo peripheral sink, which is a 2 symbol per beat, 8
bit per symbol interface with ready and valid strobes.

m The ingress_fifo source then feeds the sink of the gate peripheral.

m The gate source then feeds the DUT sink interface which has no valid or ready
strobes, but accepts 2 symbols per beat, 8 bit per symbol.

H console_stream Avalon-ST JTAG Interface

Avalon Streaming Source slow_clk
R E—— sink Avalon Streaming Sink
H ingress_fifo Avalon-ST Dual Clock FIFO
Ir—) out_csr Avalon Memory Mapped Slave fast_clk 000000000 OxO00000007
4 in Avalon Streaming Sink slow_clk
Avalon Streaming Source
B egress_fifo Avalon-ST Dual Clock FIFO
— in Avalon Streaming Sink fast_clk
— ot Axvalon Streaming Source slow_clk
B egress_pipeline_fifo |Avalon-ST Dual Clock FIFO
e T in Avalon Streaming Sink fast_clk
ot Avalon Streaming Source fast_clk
B gate stream_back_pressure_gate
- 4 ingress_snk Avalon Streaming Sink fast_clk
iNgress_src iAvalon Streaming Source
— egress_snk Avalon Streaming Sink
{ EQgress Src Avalon Streaming Source
—r il Avalon Memory Mapped Master
e > =0 Avalon Memory Mapped Slave 0x0000000c Ox0000000 £
| B dut _clut
— sink Avalon Streaming Sink fast_clk
r— SOUFCE Avalon Streaming Source

24

The egress stream path.

25

You can see the egress stream path in the picture below. All of the source interfaces are highlighted which in turn
highlights a blue path to their respective sink counterparts.

The stream begins at the dut peripheral as a 2 symbol per beat, 8 bit per symbol source interface with no ready
and no valid strobes. The stream then enters the gate sink interface which has ready and valid strobes.

The gate source then feeds the egress_pipeline_fifo sink, this FIFO is placed in the system to absorb any pipeline
d_elaly crcilater(]j by the DUT peripheral. When the gate opens, the first few results out of the DUT will be the stale
pipeline flush.

The egress_pipeline_fifo source then feeds the egress_fifo sink. The egress FIFO is sized to the same depth as
the ingress FIFO.

The egress_fifo source then feeds the console_stream sink. The egress_fifo source is a 2 symbol per beat, 8 bit
per symbol interface with ready and valid strobes, and the console_stream sink is a 1 symbol per beat, 8 bit per
symbol interface with ready and valid strobes.

B console_stream Avalon-ST JTAG Irterface
{ SFC Avalon Streaming Source slow_clk
sink Avalon Streaming Sink
B ingress_fifo Avalon-ST Dual Clock FIFO
— out_csr Avalon Memory Mapped Slave fast_clk 000000000 O0x00000007
> in Avalon Streaming Sink slow_clk
{ oLt Avalon Streaming Source
B egress_fifo Avalon-ST Dual Clock FIFO
— in Avalon Streaming Sink fast_clk

i iAvalon Streaming Source
El egress_pipeline_fifo | Avalon-ST Dusal Clock FIFO
— in Avalon Streaming Sink fast_clk
oLt Avalon Streaming Source fast_clk

slow_clk

B gate stream_back_pressure_gate
> ingress_snk Avalon Streaming Sink fast_clk
{ ingress_src Avalon Streaming Source
egress_snk Axalon Streaming Sink
egress Src Avalon Streaming Source
—< il Avalon Memory Mapped Master
> =0 Avalon Memory Mapped Slave 0x0000000c Ox0000000 £
| B dut _clut
—> sink Avalon Streaming Sink fast_clk

A N Stresimin

Detecting the ingress fill level.

m The Avalon MM master on the gate component
allows the component to read the out_csr slave
that is provided on the ingress_fifo.

m The ingress_fifo provides a 24 bit fill level value
that is read at offset O in the out_csr slave.

H ingress_fifo Avalon-ST Dual Clock FIFO
e out_csr Avalon Memory Mapped Slave fast_clk Ox00000000 OxO00000007
i Avalon Streaming Sink slow_clk
out Avalon Streaming Source
EH egress_fifo Avalon-5T Dual Clock FIFO
——— in Avalon Streaming Sink fast_clk
— out Avalon Streaming Source slow_clk
EH egress_pipeline_fifo |Avalon-5T Dual Clock FIFO
—— in Avalon Streaming Sink fast_clk
it Avalon Streaming Source fast_clk
EH gate stream_back_pressure _gate
ingress_snk Avalon Streaming Sink fast_clk
£ ingress_src Avalon Streaming Source
— egress_snk Avalon Streaming Sink
EQIESS_SIC Avalon Streaming Source
mill Avalon Memory Mapped Master
I > =0 Avalon Memory Mapped Slave Ux0000000c | OxO0000000 £

26

Dealing with the Avalon ST interface

mismatches .

m |f you paid attention to the Avalon ST interface
descriptions on the previous slides, you noticed that we
were connecting things together that did not match up
exactly. Some interfaces had different data widths,
others had different enable strobes, etc.

m SOPC Builder displays these errors in it's GUI, and if
you notice, It suggests that we allow it to automatically
Insert adapters into our system to compensate for these
differences among the components.

m The next step is to do just that, have SOPC Builder
automatically insert the necessary Avalon ST adapters
for us.

a Error. console_stream.srcingress_fifo.in: The source has 1 symbols per beat, while the sink has 2. Consider inserting a Streaming Data Format Adapter. Adapters can be automatically inserted
a Error. console_stream.srcingress_fifo.in: The sink has a ready signal of 1 bits, but the source does not.

a Error: egress_fifo.out/console_stream.sink: The source has 2 symbols per beat, while the sink has 1. Consider inserting a Streaming Data Format Adapter . Adapters can be automatically inserte
a Error. dut.sourceigate.egress_snk: The sink has a valid signal of 1 bits, but the source does not.

a Error. gate.ingress_srcidut.sink: The source has a valid signal of 1 bits, but the sink does not.

27

The auto adapted system.

T

—
Yo

28

console_stream
SrC
sink

TA_before_ingress_fifo

ir
out

DFA_before_ingress_fifo

in

ot
ingress_fifo

out_csr

in

out
DFA_before_console

in

out
egress_fifo

in

oLt
egress_pipeline_fifo

in

ot
gate

ingress_=nk

ingress_src

egress_snk

EQrEsSsS_SIC

mid

=0
TA_before_dut

in

out
TA_before_gate

ir

ot
dut

zink

SOUFCE

Avalon-ST JTAG Interface
Lyalon Streaming Source
Avalon Streaming Sink
Avalon-ST Timing Adapter
Avalon Streaming Sink

Avalon Streaming Source
Avalon-ST Data Format Adapter
Avalon Streaming Sink

Avalon Streaming Source
Avalon-ST Dual Clock FIFO
Axalon Memary Mapped Slave
Avalon Streaming Sink

Avalon Streaming Source
Ayvalon-=T Data Format Adapter
Axyalon Streaming Sink

Ayalon Streaming Source
Lyalon-ST Dual Clock FIFO
Avalon Streaming Sink

Avalon Streaming Source
Ayalon-ST Dual Clock FIFO
Avalon Streaming Sink

Avalon Streaming Source
stream_back_pressure_gate
Avalon Streaming Sink

Avalon Streaming Source
Avalon Streaming Sink

Avalon Streaming Source
Axalon Memory Mapped Master
Axalon Memary Mapped Slave
Ayalon-ST Timing Adapter
Axyalon Streaming Sink

Lyalon Streaming Source
Avalon-ST Timing Adapter
Avalon Streaming Sink

Avalon Streaming Source
my_clut

Avalon Streaming Sink

Avalon Streaming Source

slow_clk

slow_clk

slow_clk

fast_clk
slow_clk

slow_clk

fast_clk

slow_clk

fast_clk
fast_clk

fast_clk

fast_clk

fast_clk

fast_clk

000000000 |D:x00000007

020000000c |Dx0000000 £

The ingress flow thru the auto adapters.

console_stream Avalon-ST JTAG Interface

SIC Avalon Streaming Source

slow_clk

- * sink Axralon Streaming Sink
B TA_before_ingress_fifo |Avalon-5T Timing Adapter
4 in Axralon Streaming Sink slow_clk
Avalon Streaming Source
E DFA_before_ingress_fifo Awvalon-ST Data Format Adapter
4 in Axralon Streaming Sink slow_clk
Avralon Streaming Source
B ingress_fifo Avalon-ST Dual Clock FIFO
Ir—) out_csr Axralon Memory Mapped Skave fast_clk Ox00000000 Ox00000007
4 in Axralon Streaming Sink slow_clk

Avalon Streaming Source
E DFA_before_console Avalon-ST Data Format Adapter
[* in Axralon Streaming Sink slow_clk
b o out Axralon Streaming Source
B egress_fifo Avalon-ST Dual Clock FIFO
I, > in Axralon Streaming Sink fast_clk
e ot Axralon Streaming Source slow_clk
B egress_pipeline_fifo Arvalon-ST Dual Clock FIFO
— in Axralon Streaming Sink fast_clk
o out Axralon Streaming Source fast_clk
B gate stream_back_pressure_gate
- 4 ingress_snk Axralon Streaming Sink fast_clk
iNgress_src Avalon Streaming Source
3 egress_snk Axralon Streaming Sink
{ egress src Axralon Streaming Source
— mid Axralon Memory Mapped Master
2 > s0 Axralon Memory Mapped Skave 0x=0000000c Ox0000000 £
l E TA_before_dut Avalon-ST Timing Adapter
+ in Axralon Streaming Sink fast_clk
{Mvalon Streaming Source
E TA_before_gate Avalon-ST Timing Adapter
— in Axralon Streaming Sink fast_clk
= oLt Axralon Streaming Source
B dut iyl
— sink Axralon Streaming Sink fast_clk
— SOLUFCE Axralon Streaming Source

29

The egress flow thru the auto adapters.

console_stream
SrC
sink
TA_before_ingress_fifo
in
ot
DFA_before_ingress_fifo
in
ot
ingress_fifo
out_csr
in
ot
DFA_before_console
in
ot
egress_fifo
in
ot
egress_pipeline_fifo
in
ot
gate
ingress_snk
ingress_src
egress_snk

TA_before_dut
in
ot
TA_before_gate

Asvalon-5T JTAG Interface
Axralon Streaming Source
Axralon Streaming Sink
Avalon-ST Timing Adapter
Axralon Streaming Sink

Axralon Streaming Source
Avalon-ST Data Format Adapter
Axralon Streaming Sink

Axralon Streaming Source
Avalon-ST Dual Clock FIFO
Axralon Memory Mapped Skave
Axralon Streaming Sink

Axralon Streaming Source
Avalon-ST Data Format Adapter
Axralon Streaming Sink

‘Avalon Streaming Source

Avalon-ST Dual Clock FIFO
Axralon Streaming Sink

Avalon Streaming Source
Arvalon-ST Dual Clock FIFO
Axralon Streaming Sink

Avralon Streaming Source
stream_back_pressure_gate
Axralon Streaming Sink

Axralon Streaming Source
Axralon Streaming Sink

Asrabon Streaming Source
Axralon Memory Mapped Master
Axralon Memory Mapped Skave
Avalon-ST Timing Adapter
Axralon Streaming Sink

Axralon Streaming Source
Avalon-ST Timing Adapter
Axralon Streaming Sink
Axralon Streaming Source
ey _ciut

Axralon Streaming Sink

Wwalon Streaming Source

slow_clk

slow_clk

slow_clk

fast_clk
slow_clk

slow_clk

fast_clk

slow_clk

fast_clk
fast_clk

fast_clk

fast_clk

fast_clk

fast_clk

Q00000000 | Ox00000007

Q=0000000c | Ox00D0000 £

Putting it all together.

31

Once we have the viable SOPC system, we allow SOPC Builder to
generate the system for us.

Now we need to tie the SOPC system module into the FPGA top level
module, which can be done quite easily in a simple top level wrapper
as shown below.

In this integrated system flow, there are really only two signals
required by this system, the clock and the reset from the 1/O pins of
the FPGA. All the other module interconnection is done within the
SOPC system instance.

module test project top (

input clk,
input reset_n

);

test_sys sopc test _sys sopc_inst (
// 1) global signals:
.clk (clk),
.fast _clk O,
.reset_n (reset_n),
-slow_clk O,

// the_console_stream
.resetrequest_from the_console_stream O

);

endmodule

Creating the System In
SOPC Builder

The separated approach.

The separated approach.

m The previous section describe the SOPC system

33

construction from an integrated approach, where the first
step was to import our custom components as full fledge
SOPC Builder components and then add them into the
system.

In the separated approach, what we will do first is create
a couple of component “shells” which only have the
SOPC interfaces defined, but don’'t have any actual HDL
standing behind them. These SOPC interfaces will be
promoted to the top level port map of the SOPC
generated HDL, and then we will manually stitch our
custom hardware components into that top level.

These component shells are shown to the right as
“dummy_build id” and “dummy_dut”.

| Altera SOPC Builder

1) Create new component ...
ARM Cortex-b1 Processor
cummy_build_jid €
dummy_dut €
Mios Il Processar
stream_back_pressure_gate

+-Bridges and Adapters
+-Interface Protocals

+-Legacy Components
+-Memories and Memory Contrallers
+-Peripheralz

#-PLL

+-USE

+-ideo and Image Processing

Creating dummy_build id

34

Creating the dummy_build_id shell is quite easy, you launch
component editor like you would to import a component, however, you
skip the HDL Files import and go straight to the Signals tab of the GUI.

Select the typical Avalon Slave interface from the templates menu and
you’'ll get a list of typical Avalon slave signals populated in the dialog.

Remove all the unwanted signals until you have something like shown
below.

Finish up the naming and such for this component a click the finish
button to save off the hw.tcl file that defines this component.

¥ Component Editor - dummy_build_id_hw.tcl® i[

File Templates Beta

Introduction I HOL Files Signals I Interfaces | Component Wizard
P About Signals

I Mame I Interface Signal Type I Widdth I Direction
ek lclock clk i [input
“reset_n lelock reset_n 1 input
[javs_s0_readdata =0 [readdata (32 |ourtpurt

Add Signal REMOVE SO |

,&g‘) Infor Your component iz not based on HOL. Aninstance of this component will export reversed-direction signals to connect to an external module.
Q Infor Mo errars or warnings.

Helgp 4 Prev Mext |» Fimish...

Creating dummy_ dut

35

Creating the dummy_dut shell is quite easy, you launch component editor like
you would to import a component, however, you skip the HDL Files import
and go straight to the Signals tab of the GUI.

Select the typical Avalon sink interface from the templates menu and you'll
get a list of typical Avalon sink signals populated in the dialog. Then select
the typical Avalon source interface from the templates menu to create those

signals as well

Remove all the unwanted signals until you have something like shown below.

Finish up the naming and such for this component a click the finish button to
save off the hw.tcl file that defines this component.

¥ Component Editor - dummy_dut_hee.tcl* - I 5[
Fiie Templales Beta
introduction | HOL Files Signais | interfaces | Component Wizard |

b About Sianal
il Mame | Interface | Signal Type Wichh Direction
ek clock clk 1 Jimpurt
Clreset clock reset 1 Jimpurt
o jasi_in0_data inQ data 16 [impurt
' laso_outd_data outd data 16 output

Ald m [Remoyve 5 G I

Help doev | medtp |

Finish...

-f;?:l Info: Your component is not based on HDL. An instance of this component will export reversed-direction signals to connect to an external module
@‘J Infoc Mo errors or wWarmings.

The separated system

m The separated system should look nearly
identical to the previously constructed integrated

system.

m There are only two subtle differences shown on
this slide and the following slide. The buid_id
component is actually the dummy_build_id and
the dut is actually the dummy_dut.

EH console_master JTAG to Avalon Master Bridge

master Avraton Memory Mapped Master slow_clk

B sysid System ID Peripheral
control_stave i ped Slave slow_clk Ox00000000 O:xO00000007
=0 i pped Skave slow_clk U000 0000c | O:xO0000000 £

E pll_master Dumimy blaster

{ mid Avralon Memory Mapped Master clk
[B pl PLL

=1 Axrabon Memory kapped Slave clk 000000000 Ox0000001 £

36

The separated system

37

oy]‘ Fa i 4 oy { o T oy W \l Falih P A

r
1l

£l 11

console_stream
src
sink

TA_before_ingress_fifo

in
ot

DFA_before_ingress_fifo

in
out
ingress_fifo
out_csr
in
ot
DFA_before_console
in
ot
egress_fifo
in
ot
egress_pipeline_fifo
in
ot
gate
ingress_snk
ingress_src
egress_snk
EQress_src
mid
s0
TA_before_dut
in
ot
TA_before_gate

Avalon-ST JTAG Interface
Axalon Streaming Source
Avralon Streaming Sink
Avalon-ST Timing Adapter
Axalon Streaming Sink
Axralon Streaming Source
Avalon-ST Data Format Adapter
Avalon Streaming Sink
Axralon Streaming Source
Avalon-ST Dual Clock FIFO
Avralon Memory Mapped Slave
Avalon Streaming Sink
Avalon Streaming Source
Avalon-ST Data Format Adapter
Asvalon Streaming Sink
Axalon Streaming Source
Avvalon-ST Dual Clock FIFO
Axalon Streaming Sink
Axralon Streaming Source
Avalon-ST Dual Clock FIFO
Avalon Streaming Sink
Axralon Streaming Source
stream_back_pressure_gale
Axvalon Streaming Sink
Avalon Streaming Source
Avalon Streaming Sink
Axvralon Streaming Source
Axralon Memory Mapped Master
Axalon Memory Mapped Slave
Avvalon-ST Timing Adapter
Asealon Streaming Sink
Axalon Streaming Source
Avalon-ST Timing Adapter
Axalon Streaming Sink

3

clumimy_clut

Axralon Streaming Source

slow_clk
slow_clk
slow_clk

fast_clk
slow_clk

slow_clk
fast_clk

slow_clk

[lm_:llc
fast_clk

fast_clk

fast_clk

fast_clk

o

Q00000000

000000008

0x 00000007

0x 00000000

Putting it all together.

38

Once we have the viable
SOPC system, we allow
SOPC Builder to
generate the system for
us.

Now we need to tie the
SOPC system module
into the FPGA top level
module, which can be
done quite easily in a
simple top level wrapper
as shown to the right.

In this separated system
flow, in addition to wiring
up the clock and the reset
from the I/O pins of the
FPGA, all the other
module interconnection is
done manually.

You can see the extra
interface ports that have
sprung out of the top level
port map of the SOPC
system.

module test project top (

);

wire
wire
wire
wire
wire
wire
wire

input clk,
input reset_n

fast_clk;
slow_clk;

[31:0] avs_sO readdata from the build_id;

reset_n_to the build_id;
[15:0] asi_in0O _data to the dut in0O;
reset_to the dut in0O;

[15:0] aso_outO_data from the dut outO;

test_sys sopc test _sys sopc_inst (

// 1) global signals:
.clk

.Ffast _clk

.reset_n

.slow_clk

// the_build_id_sO
.avs_sO0 readdata_from_the build_id
.reset_n_to_the build_id

// the_console_stream
.resetrequest_from_the_console_stream

// the_dut _in0
.asi_in0_data _to_the dut_in0O
.reset_to_the dut in0O

// the_dut outO
.aso_outO _data_ from_the dut_outO

(clk),
(fast_clk),
(reset_n),
(slow_clk),

(avs_sO_readdata_from_the build_id),
(reset_n_to_the build_id),

OF

(asi_iIn0_data_to_the dut_in0),
(reset_to_the _dut _in0),

(aso_outO _data_from_the dut_outO)

Putting it all together.

m S0 we create some wires and manually stitch the
SOPC port map into the top level port maps of
our other components.

my build_id my build_id_inst (
// Clock Interface
.csi_clock _clk (slow_clk),
.csi_clock reset (reset_n_to_the build_id),

// WM Slave Interface
.avs_s0_readdata (avs_sO_readdata_from the build_id)

);

my _dut my_dut_inst (
// Clock Interface
.csi_clock clk (fast_clk),
.csi_clock reset (reset_to_the dut _in0),

// ST Sink Interface
.asi_sink data (asi_iIn0_data to_the dut_in0),

// ST Source Interface
.aso_source_data (aso_outO _data_ from_the dut_outO)

);

endmodule

39

Accessing the hardware system
from System Console.

Running this example on a NEEK board.

m This example has been provided with two project
archives, one that illustrates the integrated system flow
and the other illustrates the separated system flow.

m You can use either one of these systems as an example
that runs on the NEEK development board.

m System Console TCL scripts are provided to allow very
high level access and control over this hardware model.
These scripts allow you to do things like:

41

Validate the system ID peripheral.

Display the build id value.

Query or change the FIFO fill trigger level of the gate component.
Create a binary test data file.

Stream a binary data file thru the hardware design and capture the results
into an output file.

Getting into the System Console.

42

To begin, select a example archive and expand it on your hard drive in
a path that has no spaces in it. Either example should be fine as they
should both work identically.

Make sure that you have the 8.0SP1 Quartus Il and Nios Il
development tools installed on your workstation. You don’t need the
Nios Il tools to run System Console, but the following directions
assume that you have them and makes use of various utilities
provided in them. This example does not discuss alternate ways of
accomplishing the same results.

Connect your NEEK board to your workstation and power on the
NEEK board.
Open a Nios Il Command Shell

— Start -> Programs -> Altera -> Nios Il 8.0 EDS -> Nios Il 8.0 Command Shell

In the Nios Il command shell change directory to the sc_tcl directory
contained in the example design directory.
— cd "C:\bytestream_example\integrated _hw\sc_ tcl®
Next we need to program the FPGA with the precompiled SOF file.
— nios2-configure-sof ../test_project_top.sof

Then we need to launch the System Console command shell.
— system-console --project_dir=..

Operating within the system console shell.

43

Once the system console shell comes up, the first thing we need to do is initialize the shell with all
of the scripts provided with this example. The source code to these TCL scripts is available in the
directory that we should be running out of, sc_tcl. Source the initialization script like this:

- source sc_init.tcl
If that script runs successfully, then we should be able to validate the system ID peripheral in the
FPGA with this command:

-~ sc_validate_sysid $sc_env
If we have valid hardware in the FPGA then we should be able to display the build id value with
this command:

— sc_build_id_display $sc_env
Now if we want to test the hardware streaming, we can create a binary data file for testing with this
command which creates an incrementing 16 bit value for the specified count into the specified file:

- sc_create_incrementing_test_file 1024 "test_data_1024.bin“
Now that we have some test data, we can pass it thru the hardware with this command:

- sc_test_stream $sc_env "test_data_1024.bin" "output_data.bin" 2048 3072
At this point the file “output_data.bin” should have the results that were collected from that data
stream. You should be able to spot the inverted values of that 16 bit incrementing pattern. The
pipeline depth of our hardware example is just 1, so the first 16 bit value should be whatever the
last value was presented into the sink interface of our component.

Now we can change the gate trigger level and try a smaller pass of data, we change the trigger

level with this command:
-~ sc_write_gate_trigger_level $sc_env 512

And now we modify the test command to account for less input data:

- sc_test_stream $sc_env "test_data_1024.bin" "output_data.bin" 1024 3072
In general while you are in system console you should be able to type “sc_<tab>"to have a list of
all the commands beginning with “sc_” appear. Then you can up or down arrow to select one.

You should also be able to type “help <command>" to get help for any given command. All of the
commands provided with this example should report help back, and hopefully it's helpful.

What’s the test doing?

m The picture below illustrates what the streaming test is doing that we execute on the previous
slide.

m First system console opens the test data input file and reads in the binary data.
m Then system console streams the data into the hardware system.
m The “DSP Filter” in our example simply inverts the data.
m Then system console streams the results out of the hardware and stores them in the output data
file.
FPGA
A B— P I PR EE—
W REAM — —— ~ GATE FILTER
B oRe] SREEEm—e —
LS| S
|
S| JTAG
> | MASTER ML BUILD_ID
01010 10101 SYSID
10101 01010
N N

output_data.bin test_data_1024_bin

44

Summary

45

This presentation has illustrated how System Console
and the JTAG components in SOPC Builder can quickly
and easily be combined to create a test and analysis
environment for streaming peripherals.

All of the source code for the TCL scripts as well as the
HDL code for the hardware peripherals is provided in the
example archives delivered with this example. The TCL
sources are contained in the “sc_tcl” directory, and the
custom hardware sources are contained in the “ip”
directory.

For more information on the System Console and SOPC
Builder, you should refer to their respective manuals,
mentioned earlier in this presentation.

	bytestream Example
	Objective
	A Problem
	A Solution
	A Solution
	The Avalon ST Interface
	Avalon ST Basics
	Avalon ST Basics
	Avalon ST and System Console
	Avalon ST and this example.
	Synchronizing the Stream
	Creating a Synchronization GATE
	Running at speed.
	A more complete solution
	Separated System Approach
	Integrated System Approach
	Integrated vs Separated SOPC Approach
	Creating the System in SOPC Builder
	This is the system we want to create.
	Our Custom Components
	The integrated system.
	The memory mapped components.
	System Clocks
	The ingress stream path.
	The egress stream path.
	Detecting the ingress fill level.
	Dealing with the Avalon ST interface mismatches .
	The auto adapted system.
	The ingress flow thru the auto adapters.
	The egress flow thru the auto adapters.
	Putting it all together.
	Creating the System in SOPC Builder
	The separated approach.
	Creating dummy_build_id
	Creating dummy_dut
	The separated system
	The separated system
	Putting it all together.
	Putting it all together.
	Accessing the hardware system from System Console.
	Running this example on a NEEK board.
	Getting into the System Console.
	Operating within the system console shell.
	What’s the test doing?
	Summary

