
bytestream Example

Using System Console to test and
analyze streaming peripherals.

2

ObjectiveObjective

These slides attempt to illustrate how quickly and
easily the System Console environment can be
assembled into a test platform for analysis and
testing of streaming components.
The test platform for all of these examples is the
developed on the NEEK development board,
however, they could easily be ported to any other
board.

3

FPGA

A ProblemA Problem

How do you test and validate the functionality of
DSP filter algorithms in a typical design?
− At speed…
− Inside the FPGA…

DSP
FILTER

DSP
FILTER

DSP
FILTER DACADC

clock

data

clock

data

4

A SolutionA Solution
Use System Console to source data into your design and sink results from it.
Please find documentation on the JTAG Stream interface shown below in the
Quartus II Version 8.0 Handbook, Volume 5: Embedded Peripherals, Chapter
10.
Please find documentation on System Console in the System Console User
Guide.

FPGA

DSP
FILTER

DSP
FILTER

DSP
FILTER

JTAG
STREAM

SRC

System
Console

SNKJTA
G

5

A SolutionA Solution

This model could even be used to perform unit
testing of individual blocks.

FPGA

DSP
FILTER

JTAG
STREAM

SRC

System
Console

SNKJTA
G

The Avalon ST Interface

A data streaming interface protocol
supported within SOPC Builder.

7

Avalon ST BasicsAvalon ST Basics
The simplest Avalon ST interface consists of a data
path transferring data from the source interface to the
sink interface, synchronous to the clock.
You can add an enable strobe to the interface called
“valid”. The valid strobe is driven by the source to the
sink to indicate that the source is driving the next data
word onto the interface. If a source and sink only share
a valid strobe in common, then the valid strobe acts as
an enable, and data is clocked from the source to the
sink on clocks that have valid asserted. The valid
strobe operates like a forwarding enable strobe into the
data path.
You could alternatively add and an enable strobe to the
interface called “ready”. The ready strobe is driven by
the sink to the source to indicate the sink is accepting
the next data word from the interface. If a source and
sink only share a ready strobe in common, then the
ready strobe acts as an enable and data is clocked
from the source to the sink on clocks that have ready
asserted. The ready strobe operates like a back
pressuring enable strobe back thru the data path.
You can add both a “valid” and a “ready” strobe to the
interface as well. The ready strobe can have an
attribute called ready latency which can delay the data
transfer clock by a specified latency, and the
coordination of the valid and ready strobes must then
account for this ready latency, but this goes beyond the
scope of this discussion.

AvalonST
Source

AvalonST
Sink

clock
data
ready

AvalonST
Source

AvalonST
Sink

clock
data
valid

AvalonST
Source

AvalonST
Sink

clock
data

AvalonST
Source

AvalonST
Sink

clock
data
valid
ready

Data Only

valid Only

ready Only

valid and ready

8

Avalon ST BasicsAvalon ST Basics

Avalon ST interfaces can also add more
complexity, like channel information, error
information, etc. The complete scope of the
Avalon ST interface is documented in the Avalon
Interface Specification.

9

Avalon ST and System ConsoleAvalon ST and System Console

If your DSP filter block has some form of
Avalon ST enable strobe on it as shown
on the right, then you could connect it
directly to the JTAG Stream interface
that connects to the system console
environment, as shown below.
Since the JTAG Stream component has
valid and ready strobes on it to pace the
data thru the interface, streaming data
from the relatively slow JTAG interface
thru the DSP filter block and back can
by totally synchronized by the ready and
valid strobes.

AvalonST
Source

AvalonST
Sink

clock
data
ready

AvalonST
Source

AvalonST
Sink

clock
data
valid

AvalonST
Source

AvalonST
Sink

clock
data
valid
ready

valid Only

ready Only

valid and ready

FPGA

JTAG
STREAM

SRC

SNKJTA
G

DSP
FILTER

10

Avalon ST and this example.Avalon ST and this example.

For purposes of this example, we will focus on the simplest of these
Avalon ST interfaces, data only, so there will be no ready or valid
strobes to provide enable queues to the interfaces.
This is a perfectly valid way to use the Avalon ST interface. The role
of ready and valid in this case are described in the Avalon Interface
Specification as follows:
− Ready – Sources without a ready input cannot be backpressured, and sinks

without a ready output never need to backpressure.
− Valid – Sources without a valid output implicitly provide valid data on every cycle

that they're not being backpressured, and sinks without a valid input expect valid
data on every cycle that they are not backpressuring.

Though this is a very simple streaming interface consisting of data,
synchronized to a clock, it also presents a challenge to interface with
over the relatively slow JTAG interface, since there are no enable
signals available to pace the data thru the components.

AvalonST
Source

AvalonST
Sink

clock
data

Data Only

Synchronizing the Stream

For components with no synchronization
strobes.

12

FPGA

Creating a Synchronization GATECreating a Synchronization GATE
In the simplest case where the DSP filters only uses clock and data, there’s a bit of infrastructure needed to
facilitate proper operation at speed within the FPGA.
A back pressure “gating” component is inserted as shown below to allow an ingress FIFO to accumulate a
specified amount of data. An Avalon Master polls the Avalon Slave on the ingress FIFO to detect the fill level.
Once the fill level is achieved, the GATE opens and dumps the data thru the DUT at the clock rate of the DUT.
The egress FIFO is a bit bigger than the ingress data such that the pipeline depth of the DUT is accounted for,
and the GATE component also ensures that the egress FIFO is only filled with data after the ingress GATE has
opened.
System Console may now be used to fill the ingress FIFO with input and extract the results from the egress FIFO.

DSP
FILTER

JTAG
STREAM

SRC

SNKJTA
G

INGRESS FIFO

EGRESS FIFO
BP

GATE

PIPE FIFO

MS

13

FPGA

Running at speed.Running at speed.

In this example the clock domain of the JTAG system
console infrastructure is placed in a slower clock
domain, and the ingress and egress FIFOs are created
from DCFIFOs which accomplish the clock domain
crossing into the DUT clock domain.

DSP
FILTER

JTAG
STREAM

SRC

SNKJTA
G

INGRESS FIFO

EGRESS FIFO
BP

GATE

PIPE FIFO

MS

JTAG CLOCK DOMAIN DUT CLOCK DOMAIN

14

FPGA

A more complete solutionA more complete solution
We can create a small SOPC system like this to provide the streaming channel as well as system
identification and build identification thru a JTAG Master interface.
The JTAG Master is also given access to a slave on the GATE component which allows system
console to adjust the fill trigger level for the GATE component.
Please find documentation on the JTAG Master interface shown below in the Quartus II Version
8.0 Handbook, Volume 5: Embedded Peripherals, Chapter 12.
At this point the user can simply stitch their build ID and DUT blocks into the SOPC system in a top
level module. Optionally, the user could build these blocks right into the SOPC system itself.

DSP
FILTER

JTAG
STREAM

SRC

SNKJTA
G

INGRESS FIFO

EGRESS FIFO
BP

GATE

PIPE FIFO

MS

JTAG
MASTER

JTA
G

SYSID
BUILD_IDM

S

15

FPGA

SOPC System

Separated System ApproachSeparated System Approach

This picture illustrates the approach of keeping the users modules
external to the SOPC system.
In this case the user would create the SOPC system shown below and
then manually stitch their components into the top level HDL module
that SOPC Builder generates.

DSP
FILTER

JTAG
STREAM

SRC

SNKJTA
G

INGRESS FIFO

EGRESS FIFO
BP

GATE

PIPE FIFO

MS

JTAG
MASTER

JTA
G

SYSID
BUILD_IDM

S

16

FPGA

SOPC System

Integrated System ApproachIntegrated System Approach
This picture illustrates the approach of placing the users modules inside the
SOPC system.
In this case the user would create the SOPC system shown below and import
their HDL component into SOPC Builder and place them directly into the
system.
There would be no manual manipulation of the top level modules in this case.

DSP
FILTER

JTAG
STREAM

SRC

SNKJTA
G

INGRESS FIFO

EGRESS FIFO
BP

GATE

PIPE FIFO

MS

JTAG
MASTER

JTA
G

SYSID
BUILD_IDM

S

17

Integrated vs Separated SOPC ApproachIntegrated vs Separated SOPC Approach

There is no advantage to either design flow from an SOPC Builder or
Altera tools perspective, although the integrated approach requires
potentially less manual intervention by humans.
Each of the examples should produce exactly the same result in
hardware, assuming that the manual stitching is done properly in the
separated approach.
In each flow, during a component’s development cycle, you could edit
the source code and recompile the design without requiring SOPC
Builder generation as long as you are not changing the SOPC
interface ports, masters, slaves, sources and sinks.
In either case, if you adjust any of the SOPC interface ports, you will
be required to regenerate the SOPC system to account for the
alterations in the new revision.
Generally speaking, personal preference or user design flow
requirement will generally determine which approach is best for any
given user environment.

Creating the System in
SOPC Builder
The integrated approach.

19

This is the system we want to create.This is the system we want to create.

20

Our Custom ComponentsOur Custom Components

In this example our DUT component will simply invert
the data that it receives on the input stream and pass
it to the output stream.
The streaming component that we want to test,
my_dut, as well as the my_build_id peripheral are
custom HDL components that we should import with
the SOPC Builder Component Editor to get started.
This process is described in the Quartus II Version 8.0
Handbook, Volume 4: SOPC Builder.
The stream_back_pressure_gate peripheral is already
created for us to use as the GATE peripheral shown in
the previous block diagrams.

21

The integrated system.The integrated system.

The following slides will walk thru how this system is put
together and why it is put together this way.

22

The memory mapped components.The memory mapped components.
In order to facilitate system identification as well as run time manipulation of the gate
component a small memory mapped section is created in this design to allow the
System Console to peek and poke thru the JTAG Master into the memory mapped
slaves.
The sysid peripheral provides a 64 bit system identification value that is updated each
time the SOPC system is generated. This can be validated at run time from the
System Console environment and provides a useful debug assistance by knowing
what revision of a hardware design is programmed into the FPGA.
The build_id peripheral is a user supplied custom component that has the same
motivation of the sysid peripheral but since it is under user control, the user may
manipulate the value of this ID at will, regardless of the state of an actual SOPC
system regeneration. For instance if the user wishes to make source code changes to
their DUT peripheral, but does not require SOPC system regeneration, they could
modify the value of this build ID to account for the updated revision in their hardware.
The gate peripheral provides a slave interface that allows us to query and change the
FIFO fill trigger level that the gate component uses to trigger the gate opening.

23

System ClocksSystem Clocks
We place a PLL into the system to create the clocks that we desire.
The PLL takes the 50MHz clock in from the onboard oscillator, “clk”, and generates a
“slow_clk” of 25MHz for our System Console infrastructure as well as a “fast_clk” of
190MHz for our DUT infrastructure.
In the 3C25C8 device on the NEEK board, the DCFIFOs seem to be the limiting factor
for Fmax of around 195MHz, so that drove the 190MHz selection for the DUT clock
domain.

We place a “Dummy Master” in the design and connect it to the PLL slave interface for
two reasons.
First, there is nothing practical that can be done with this slave interface, so we simply
need a master to terminate it with.
Second, with a dummy master we can place it in the same clock domain as the PLL
slave and thus save an auto generated clock adapter from being created for us.

24

The ingress stream path.The ingress stream path.
You can see the ingress stream path in the picture below. All of the source interfaces
are highlighted which in turn highlights a blue path to their respective sink
counterparts.
The stream begins at the console_stream peripheral as a 1 symbol per beat, 8 bit per
symbol source interface with a valid strobe.
The stream then enters the ingress_fifo peripheral sink, which is a 2 symbol per beat, 8
bit per symbol interface with ready and valid strobes.
The ingress_fifo source then feeds the sink of the gate peripheral.
The gate source then feeds the DUT sink interface which has no valid or ready
strobes, but accepts 2 symbols per beat, 8 bit per symbol.

25

The egress stream path.The egress stream path.
You can see the egress stream path in the picture below. All of the source interfaces are highlighted which in turn
highlights a blue path to their respective sink counterparts.
The stream begins at the dut peripheral as a 2 symbol per beat, 8 bit per symbol source interface with no ready
and no valid strobes. The stream then enters the gate sink interface which has ready and valid strobes.
The gate source then feeds the egress_pipeline_fifo sink, this FIFO is placed in the system to absorb any pipeline
delay created by the DUT peripheral. When the gate opens, the first few results out of the DUT will be the stale
pipeline flush.
The egress_pipeline_fifo source then feeds the egress_fifo sink. The egress FIFO is sized to the same depth as
the ingress FIFO.
The egress_fifo source then feeds the console_stream sink. The egress_fifo source is a 2 symbol per beat, 8 bit
per symbol interface with ready and valid strobes, and the console_stream sink is a 1 symbol per beat, 8 bit per
symbol interface with ready and valid strobes.

26

Detecting the ingress fill level.Detecting the ingress fill level.

The Avalon MM master on the gate component
allows the component to read the out_csr slave
that is provided on the ingress_fifo.
The ingress_fifo provides a 24 bit fill level value
that is read at offset 0 in the out_csr slave.

27

Dealing with the Avalon ST interface
mismatches .
Dealing with the Avalon ST interface
mismatches .

If you paid attention to the Avalon ST interface
descriptions on the previous slides, you noticed that we
were connecting things together that did not match up
exactly. Some interfaces had different data widths,
others had different enable strobes, etc.
SOPC Builder displays these errors in it’s GUI, and if
you notice, it suggests that we allow it to automatically
insert adapters into our system to compensate for these
differences among the components.
The next step is to do just that, have SOPC Builder
automatically insert the necessary Avalon ST adapters
for us.

28

The auto adapted system.The auto adapted system.

29

The ingress flow thru the auto adapters.The ingress flow thru the auto adapters.

30

The egress flow thru the auto adapters.The egress flow thru the auto adapters.

31

Putting it all together.Putting it all together.

Once we have the viable SOPC system, we allow SOPC Builder to
generate the system for us.
Now we need to tie the SOPC system module into the FPGA top level
module, which can be done quite easily in a simple top level wrapper
as shown below.
In this integrated system flow, there are really only two signals
required by this system, the clock and the reset from the I/O pins of
the FPGA. All the other module interconnection is done within the
SOPC system instance.

module test_project_top (

input clk,
input reset_n

);

test_sys_sopc test_sys_sopc_inst (
// 1) global signals:
.clk (clk),
.fast_clk (),
.reset_n (reset_n),
.slow_clk (),

// the_console_stream
.resetrequest_from_the_console_stream ()

);

endmodule

Creating the System in
SOPC Builder
The separated approach.

33

The separated approach.The separated approach.

The previous section describe the SOPC system
construction from an integrated approach, where the first
step was to import our custom components as full fledge
SOPC Builder components and then add them into the
system.
In the separated approach, what we will do first is create
a couple of component “shells” which only have the
SOPC interfaces defined, but don’t have any actual HDL
standing behind them. These SOPC interfaces will be
promoted to the top level port map of the SOPC
generated HDL, and then we will manually stitch our
custom hardware components into that top level.
These component shells are shown to the right as
“dummy_build_id” and “dummy_dut”.

34

Creating dummy_build_idCreating dummy_build_id

Creating the dummy_build_id shell is quite easy, you launch
component editor like you would to import a component, however, you
skip the HDL Files import and go straight to the Signals tab of the GUI.
Select the typical Avalon Slave interface from the templates menu and
you’ll get a list of typical Avalon slave signals populated in the dialog.
Remove all the unwanted signals until you have something like shown
below.
Finish up the naming and such for this component a click the finish
button to save off the hw.tcl file that defines this component.

35

Creating dummy_dutCreating dummy_dut
Creating the dummy_dut shell is quite easy, you launch component editor like
you would to import a component, however, you skip the HDL Files import
and go straight to the Signals tab of the GUI.
Select the typical Avalon sink interface from the templates menu and you’ll
get a list of typical Avalon sink signals populated in the dialog. Then select
the typical Avalon source interface from the templates menu to create those
signals as well
Remove all the unwanted signals until you have something like shown below.
Finish up the naming and such for this component a click the finish button to
save off the hw.tcl file that defines this component.

36

The separated systemThe separated system

The separated system should look nearly
identical to the previously constructed integrated
system.
There are only two subtle differences shown on
this slide and the following slide. The buid_id
component is actually the dummy_build_id and
the dut is actually the dummy_dut.

37

The separated systemThe separated system

38

Putting it all together.Putting it all together.
Once we have the viable
SOPC system, we allow
SOPC Builder to
generate the system for
us.
Now we need to tie the
SOPC system module
into the FPGA top level
module, which can be
done quite easily in a
simple top level wrapper
as shown to the right.
In this separated system
flow, in addition to wiring
up the clock and the reset
from the I/O pins of the
FPGA, all the other
module interconnection is
done manually.
You can see the extra
interface ports that have
sprung out of the top level
port map of the SOPC
system.

module test_project_top (

input clk,
input reset_n

);

wire fast_clk;
wire slow_clk;
wire [31:0] avs_s0_readdata_from_the_build_id;
wire reset_n_to_the_build_id;
wire [15:0] asi_in0_data_to_the_dut_in0;
wire reset_to_the_dut_in0;
wire [15:0] aso_out0_data_from_the_dut_out0;

test_sys_sopc test_sys_sopc_inst (
// 1) global signals:
.clk (clk),
.fast_clk (fast_clk),
.reset_n (reset_n),
.slow_clk (slow_clk),

// the_build_id_s0
.avs_s0_readdata_from_the_build_id (avs_s0_readdata_from_the_build_id),
.reset_n_to_the_build_id (reset_n_to_the_build_id),

// the_console_stream
.resetrequest_from_the_console_stream (),

// the_dut_in0
.asi_in0_data_to_the_dut_in0 (asi_in0_data_to_the_dut_in0),
.reset_to_the_dut_in0 (reset_to_the_dut_in0),

// the_dut_out0
.aso_out0_data_from_the_dut_out0 (aso_out0_data_from_the_dut_out0)

);

39

Putting it all together.Putting it all together.

So we create some wires and manually stitch the
SOPC port map into the top level port maps of
our other components.

my_build_id my_build_id_inst (
// Clock Interface
.csi_clock_clk (slow_clk),
.csi_clock_reset (reset_n_to_the_build_id),

// MM Slave Interface
.avs_s0_readdata (avs_s0_readdata_from_the_build_id)

);

my_dut my_dut_inst (
// Clock Interface
.csi_clock_clk (fast_clk),
.csi_clock_reset (reset_to_the_dut_in0),

// ST Sink Interface
.asi_sink_data (asi_in0_data_to_the_dut_in0),

// ST Source Interface
.aso_source_data (aso_out0_data_from_the_dut_out0)

);

endmodule

Accessing the hardware system
from System Console.

41

Running this example on a NEEK board.Running this example on a NEEK board.

This example has been provided with two project
archives, one that illustrates the integrated system flow
and the other illustrates the separated system flow.
You can use either one of these systems as an example
that runs on the NEEK development board.
System Console TCL scripts are provided to allow very
high level access and control over this hardware model.
These scripts allow you to do things like:
− Validate the system ID peripheral.
− Display the build id value.
− Query or change the FIFO fill trigger level of the gate component.
− Create a binary test data file.
− Stream a binary data file thru the hardware design and capture the results

into an output file.

42

Getting into the System Console.Getting into the System Console.

To begin, select a example archive and expand it on your hard drive in
a path that has no spaces in it. Either example should be fine as they
should both work identically.
Make sure that you have the 8.0SP1 Quartus II and Nios II
development tools installed on your workstation. You don’t need the
Nios II tools to run System Console, but the following directions
assume that you have them and makes use of various utilities
provided in them. This example does not discuss alternate ways of
accomplishing the same results.
Connect your NEEK board to your workstation and power on the
NEEK board.
Open a Nios II Command Shell
− Start -> Programs -> Altera -> Nios II 8.0 EDS -> Nios II 8.0 Command Shell

In the Nios II command shell change directory to the sc_tcl directory
contained in the example design directory.
− cd "C:\bytestream_example\integrated_hw\sc_tcl“

Next we need to program the FPGA with the precompiled SOF file.
− nios2-configure-sof ../test_project_top.sof

Then we need to launch the System Console command shell.
− system-console --project_dir=..

43

Operating within the system console shell.Operating within the system console shell.

Once the system console shell comes up, the first thing we need to do is initialize the shell with all
of the scripts provided with this example. The source code to these TCL scripts is available in the
directory that we should be running out of, sc_tcl. Source the initialization script like this:
− source sc_init.tcl

If that script runs successfully, then we should be able to validate the system ID peripheral in the
FPGA with this command:
− sc_validate_sysid $sc_env

If we have valid hardware in the FPGA then we should be able to display the build id value with
this command:
− sc_build_id_display $sc_env

Now if we want to test the hardware streaming, we can create a binary data file for testing with this
command which creates an incrementing 16 bit value for the specified count into the specified file:
− sc_create_incrementing_test_file 1024 "test_data_1024.bin“

Now that we have some test data, we can pass it thru the hardware with this command:
− sc_test_stream $sc_env "test_data_1024.bin" "output_data.bin" 2048 3072

At this point the file “output_data.bin” should have the results that were collected from that data
stream. You should be able to spot the inverted values of that 16 bit incrementing pattern. The
pipeline depth of our hardware example is just 1, so the first 16 bit value should be whatever the
last value was presented into the sink interface of our component.
Now we can change the gate trigger level and try a smaller pass of data, we change the trigger
level with this command:
− sc_write_gate_trigger_level $sc_env 512

And now we modify the test command to account for less input data:
− sc_test_stream $sc_env "test_data_1024.bin" "output_data.bin" 1024 3072

In general while you are in system console you should be able to type “sc_<tab>” to have a list of
all the commands beginning with “sc_” appear. Then you can up or down arrow to select one.
You should also be able to type “help <command>” to get help for any given command. All of the
commands provided with this example should report help back, and hopefully it’s helpful.

44

What’s the test doing?What’s the test doing?
The picture below illustrates what the streaming test is doing that we execute on the previous
slide.
First system console opens the test data input file and reads in the binary data.
Then system console streams the data into the hardware system.
The “DSP Filter” in our example simply inverts the data.
Then system console streams the results out of the hardware and stores them in the output data
file.

FPGA

DSP
FILTER

JTAG
STREAM

SRC

SNKJTA
G

INGRESS FIFO

EGRESS FIFO
BP

GATE

PIPE FIFO

MS

JTAG
MASTER

JTA
G

SYSID

BUILD_IDM

S

System
Console

10101
01010

10101
01010

01010
10101

01010
10101

test_data_1024.binoutput_data.bin

45

SummarySummary

This presentation has illustrated how System Console
and the JTAG components in SOPC Builder can quickly
and easily be combined to create a test and analysis
environment for streaming peripherals.
All of the source code for the TCL scripts as well as the
HDL code for the hardware peripherals is provided in the
example archives delivered with this example. The TCL
sources are contained in the “sc_tcl” directory, and the
custom hardware sources are contained in the “ip”
directory.
For more information on the System Console and SOPC
Builder, you should refer to their respective manuals,
mentioned earlier in this presentation.

	bytestream Example
	Objective
	A Problem
	A Solution
	A Solution
	The Avalon ST Interface
	Avalon ST Basics
	Avalon ST Basics
	Avalon ST and System Console
	Avalon ST and this example.
	Synchronizing the Stream
	Creating a Synchronization GATE
	Running at speed.
	A more complete solution
	Separated System Approach
	Integrated System Approach
	Integrated vs Separated SOPC Approach
	Creating the System in SOPC Builder
	This is the system we want to create.
	Our Custom Components
	The integrated system.
	The memory mapped components.
	System Clocks
	The ingress stream path.
	The egress stream path.
	Detecting the ingress fill level.
	Dealing with the Avalon ST interface mismatches .
	The auto adapted system.
	The ingress flow thru the auto adapters.
	The egress flow thru the auto adapters.
	Putting it all together.
	Creating the System in SOPC Builder
	The separated approach.
	Creating dummy_build_id
	Creating dummy_dut
	The separated system
	The separated system
	Putting it all together.
	Putting it all together.
	Accessing the hardware system from System Console.
	Running this example on a NEEK board.
	Getting into the System Console.
	Operating within the system console shell.
	What’s the test doing?
	Summary

