
bytestream Example

Using System Console to test and 
analyze streaming peripherals.
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ObjectiveObjective

These slides attempt to illustrate how quickly and 
easily the System Console environment can be 
assembled into a test platform for analysis and 
testing of streaming components.
The test platform for all of these examples is the 
developed on the NEEK development board, 
however, they could easily be ported to any other 
board.
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FPGA

A ProblemA Problem

How do you test and validate the functionality of 
DSP filter algorithms in a typical design?
− At speed…
− Inside the FPGA…
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A SolutionA Solution
Use System Console to source data into your design and sink results from it.
Please find documentation on the JTAG Stream interface shown below in the 
Quartus II Version 8.0 Handbook, Volume 5: Embedded Peripherals, Chapter 
10.
Please find documentation on System Console in the System Console User 
Guide.
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A SolutionA Solution

This model could even be used to perform unit 
testing of individual blocks.
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The Avalon ST Interface

A data streaming interface protocol 
supported within SOPC Builder.
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Avalon ST BasicsAvalon ST Basics
The simplest Avalon ST interface consists of a data 
path transferring data from the source interface to the 
sink interface, synchronous to the clock.
You can add an enable strobe to the interface called 
“valid”.  The valid strobe is driven by the source to the 
sink to indicate that the source is driving the next data 
word onto the interface.  If a source and sink only share 
a valid strobe in common, then the valid strobe acts as 
an enable, and data is clocked from the source to the 
sink on clocks that have valid asserted.  The valid 
strobe operates like a forwarding enable strobe into the 
data path.
You could alternatively add and an enable strobe to the 
interface called “ready”.  The ready strobe is driven by 
the sink to the source to indicate the sink is accepting 
the next data word from the interface.  If a source and 
sink only share a ready strobe in common, then the 
ready strobe acts as an enable and data is clocked 
from the source to the sink on clocks that have ready 
asserted.  The ready strobe operates like a back 
pressuring enable strobe back thru the data path.
You can add both a “valid” and a “ready” strobe to the 
interface as well. The ready strobe can have an 
attribute called ready latency which can delay the data 
transfer clock by a specified latency, and the 
coordination of the valid and ready strobes must then 
account for this ready latency, but this goes beyond the 
scope of this discussion.
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Avalon ST BasicsAvalon ST Basics

Avalon ST interfaces can also add more 
complexity, like channel information, error 
information, etc.  The complete scope of the 
Avalon ST interface is documented in the Avalon 
Interface Specification.
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Avalon ST and System ConsoleAvalon ST and System Console

If your DSP filter block has some form of 
Avalon ST enable strobe on it as shown 
on the right, then you could connect it 
directly to the JTAG Stream interface 
that connects to the system console 
environment, as shown below.
Since the JTAG Stream component has 
valid and ready strobes on it to pace the 
data thru the interface, streaming data 
from the relatively slow JTAG interface 
thru the DSP filter block and back can 
by totally synchronized by the ready and 
valid strobes.
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Avalon ST and this example.Avalon ST and this example.

For purposes of this example, we will focus on the simplest of these 
Avalon ST interfaces, data only, so there will be no ready or valid 
strobes to provide enable queues to the interfaces.
This is a perfectly valid way to use the Avalon ST interface.  The role 
of ready and valid in this case are described in the Avalon Interface 
Specification as follows:
− Ready – Sources without a ready input cannot be backpressured, and sinks 

without a ready output never need to backpressure.
− Valid – Sources without a valid output implicitly provide valid data on every cycle 

that they're not being backpressured, and sinks without a valid input expect valid 
data on every cycle that they are not backpressuring.

Though this is a very simple streaming interface consisting of data, 
synchronized to a clock, it also presents a challenge to interface with 
over the relatively slow JTAG interface, since there are no enable 
signals available to pace the data thru the components.
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Synchronizing the Stream

For components with no synchronization 
strobes.



12

FPGA

Creating a Synchronization GATECreating a Synchronization GATE
In the simplest case where the DSP filters only uses clock and data, there’s a bit of infrastructure needed to 
facilitate proper operation at speed within the FPGA.
A back pressure “gating” component is inserted as shown below to allow an ingress FIFO to accumulate a 
specified amount of data.  An Avalon Master polls the Avalon Slave on the ingress FIFO to detect the fill level.
Once the fill level is achieved, the GATE opens and dumps the data thru the DUT at the clock rate of the DUT.
The egress FIFO is a bit bigger than the ingress data such that the pipeline depth of the DUT is accounted for, 
and the GATE component also ensures that the egress FIFO is only filled with data after the ingress GATE has 
opened.
System Console may now be used to fill the ingress FIFO with input and extract the results from the egress FIFO.
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FPGA

Running at speed.Running at speed.

In this example the clock domain of the JTAG system 
console infrastructure is placed in a slower clock 
domain, and the ingress and egress FIFOs are created 
from DCFIFOs which accomplish the clock domain 
crossing into the DUT clock domain.
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FPGA

A more complete solutionA more complete solution
We can create a small SOPC system like this to provide the streaming channel as well as system 
identification and build identification thru a JTAG Master interface.
The JTAG Master is also given access to a slave on the GATE component which allows system 
console to adjust the fill trigger level for the GATE component.
Please find documentation on the JTAG Master interface shown below in the Quartus II Version 
8.0 Handbook, Volume 5: Embedded Peripherals, Chapter 12.
At this point the user can simply stitch their build ID and DUT blocks into the SOPC system in a top 
level module.  Optionally, the user could build these blocks right into the SOPC system itself.
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FPGA

SOPC System

Separated System ApproachSeparated System Approach

This picture illustrates the approach of keeping the users modules 
external to the SOPC system.
In this case the user would create the SOPC system shown below and 
then manually stitch their components into the top level HDL module 
that SOPC Builder generates.
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FPGA

SOPC System

Integrated System ApproachIntegrated System Approach
This picture illustrates the approach of placing the users modules inside the 
SOPC system.
In this case the user would create the SOPC system shown below and import 
their HDL component into SOPC Builder and place them directly into the 
system.
There would be no manual manipulation of the top level modules in this case.
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Integrated vs Separated SOPC ApproachIntegrated vs Separated SOPC Approach

There is no advantage to either design flow from an SOPC Builder or 
Altera tools perspective, although the integrated approach requires 
potentially less manual intervention by humans.
Each of the examples should produce exactly the same result in 
hardware, assuming that the manual stitching is done properly in the 
separated approach.
In each flow, during a component’s development cycle, you could edit 
the source code and recompile the design without requiring SOPC 
Builder generation as long as you are not changing the SOPC 
interface ports, masters, slaves, sources and sinks.
In either case, if you adjust any of the SOPC interface ports, you will 
be required to regenerate the SOPC system to account for the 
alterations in the new revision.
Generally speaking, personal preference or user design flow 
requirement will generally determine which approach is best for any 
given user environment.



Creating the System in 
SOPC Builder
The integrated approach.
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This is the system we want to create.This is the system we want to create.
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Our Custom ComponentsOur Custom Components

In this example our DUT component will simply invert 
the data that it receives on the input stream and pass 
it to the output stream.
The streaming component that we want to test, 
my_dut, as well as the my_build_id peripheral are 
custom HDL components that we should import with 
the SOPC Builder Component Editor to get started.
This process is described in the Quartus II Version 8.0 
Handbook, Volume 4: SOPC Builder.
The stream_back_pressure_gate peripheral is already 
created for us to use as the GATE peripheral shown in 
the previous block diagrams.
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The integrated system.The integrated system.

The following slides will walk thru how this system is put 
together and why it is put together this way.
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The memory mapped components.The memory mapped components.
In order to facilitate system identification as well as run time manipulation of the gate 
component a small memory mapped section is created in this design to allow the 
System Console to peek and poke thru the JTAG Master into the memory mapped 
slaves.
The sysid peripheral provides a 64 bit system identification value that is updated each 
time the SOPC system is generated.  This can be validated at run time from the 
System Console environment and provides a useful debug assistance by knowing 
what revision of a hardware design is programmed into the FPGA.
The build_id peripheral is a user supplied custom component that has the same 
motivation of the sysid peripheral but since it is under user control, the user may 
manipulate the value of this ID at will, regardless of the state of an actual SOPC 
system regeneration.  For instance if the user wishes to make source code changes to 
their DUT peripheral, but does not require SOPC system regeneration, they could 
modify the value of this build ID to account for the updated revision in their hardware.
The gate peripheral provides a slave interface that allows us to query and change the 
FIFO fill trigger level that the gate component uses to trigger the gate opening.
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System ClocksSystem Clocks
We place a PLL into the system to create the clocks that we desire.
The PLL takes the 50MHz clock in from the onboard oscillator, “clk”, and generates a 
“slow_clk” of 25MHz for our System Console infrastructure as well as a “fast_clk” of 
190MHz for our DUT infrastructure.
In the 3C25C8 device on the NEEK board, the DCFIFOs seem to be the limiting factor 
for Fmax of around 195MHz, so that drove the 190MHz selection for the DUT clock 
domain.

We place a “Dummy Master” in the design and connect it to the PLL slave interface for 
two reasons.
First, there is nothing practical that can be done with this slave interface, so we simply 
need a master to terminate it with.
Second, with a dummy master we can place it in the same clock domain as the PLL 
slave and thus save an auto generated clock adapter from being created for us.
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The ingress stream path.The ingress stream path.
You can see the ingress stream path in the picture below.  All of the source interfaces 
are highlighted which in turn highlights a blue path to their respective sink 
counterparts.
The stream begins at the console_stream peripheral as a 1 symbol per beat, 8 bit per 
symbol source interface with a valid strobe.
The stream then enters the ingress_fifo peripheral sink, which is a 2 symbol per beat, 8 
bit per symbol interface with ready and valid strobes.
The ingress_fifo source then feeds the sink of the gate peripheral.
The gate source then feeds the DUT sink interface which has no valid or ready 
strobes, but accepts 2 symbols per beat, 8 bit per symbol.
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The egress stream path.The egress stream path.
You can see the egress stream path in the picture below.  All of the source interfaces are highlighted which in turn 
highlights a blue path to their respective sink counterparts.
The stream begins at the dut peripheral as a 2 symbol per beat, 8 bit per symbol source interface with no ready 
and no valid strobes.  The stream then enters the gate sink interface which has ready and valid strobes.
The gate source then feeds the egress_pipeline_fifo sink, this FIFO is placed in the system to absorb any pipeline 
delay created by the DUT peripheral.  When the gate opens, the first few results out of the DUT will be the stale 
pipeline flush.
The egress_pipeline_fifo source then feeds the egress_fifo sink.  The egress FIFO is sized to the same depth as 
the ingress FIFO.
The egress_fifo source then feeds the console_stream sink.  The egress_fifo source is a 2 symbol per beat, 8 bit 
per symbol interface with ready and valid strobes, and the console_stream sink is a 1 symbol per beat, 8 bit per 
symbol interface with ready and valid strobes.
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Detecting the ingress fill level.Detecting the ingress fill level.

The Avalon MM master on the gate component 
allows the component to read the out_csr slave 
that is provided on the ingress_fifo.
The ingress_fifo provides a 24 bit fill level value 
that is read at offset 0 in the out_csr slave.
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Dealing with the Avalon ST interface 
mismatches .
Dealing with the Avalon ST interface 
mismatches .

If you paid attention to the Avalon ST interface 
descriptions on the previous slides, you noticed that we 
were connecting things together that did not match up 
exactly.  Some interfaces had different data widths, 
others had different enable strobes, etc.
SOPC Builder displays these errors in it’s GUI, and if 
you notice, it suggests that we allow it to automatically 
insert adapters into our system to compensate for these 
differences among the components.
The next step is to do just that, have SOPC Builder 
automatically insert the necessary Avalon ST adapters 
for us.
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The auto adapted system.The auto adapted system.
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The ingress flow thru the auto adapters.The ingress flow thru the auto adapters.
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The egress flow thru the auto adapters.The egress flow thru the auto adapters.
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Putting it all together.Putting it all together.

Once we have the viable SOPC system, we allow SOPC Builder to 
generate the system for us.
Now we need to tie the SOPC system module into the FPGA top level 
module, which can be done quite easily in a simple top level wrapper 
as shown below.
In this integrated system flow, there are really only two signals 
required by this system, the clock and the reset from the I/O pins of 
the FPGA.  All the other module interconnection is done within the 
SOPC system instance.

module test_project_top (

input clk,
input reset_n

);

test_sys_sopc test_sys_sopc_inst (
// 1) global signals:
.clk (clk),
.fast_clk (),
.reset_n (reset_n),
.slow_clk (),

// the_console_stream
.resetrequest_from_the_console_stream ()

);

endmodule



Creating the System in 
SOPC Builder
The separated approach.
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The separated approach.The separated approach.

The previous section describe the SOPC system 
construction from an integrated approach, where the first 
step was to import our custom components as full fledge 
SOPC Builder components and then add them into the 
system.
In the separated approach, what we will do first is create 
a couple of component “shells” which only have the 
SOPC interfaces defined, but don’t have any actual HDL 
standing behind them.  These SOPC interfaces will be 
promoted to the top level port map of the SOPC 
generated HDL, and then we will manually stitch our 
custom hardware components into that top level.
These component shells are shown to the right as 
“dummy_build_id” and “dummy_dut”.
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Creating dummy_build_idCreating dummy_build_id

Creating the dummy_build_id shell is quite easy, you launch 
component editor like you would to import a component, however, you 
skip the HDL Files import and go straight to the Signals tab of the GUI.
Select the typical Avalon Slave interface from the templates menu and 
you’ll get a list of typical Avalon slave signals populated in the dialog.
Remove all the unwanted signals until you have something like shown 
below.
Finish up the naming and such for this component a click the finish 
button to save off the hw.tcl file that defines this component.
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Creating dummy_dutCreating dummy_dut
Creating the dummy_dut shell is quite easy, you launch component editor like 
you would to import a component, however, you skip the HDL Files import 
and go straight to the Signals tab of the GUI.
Select the typical Avalon sink interface from the templates menu and you’ll 
get a list of typical Avalon sink signals populated in the dialog.  Then select 
the typical Avalon source interface from the templates menu to create those 
signals as well 
Remove all the unwanted signals until you have something like shown below.
Finish up the naming and such for this component a click the finish button to 
save off the hw.tcl file that defines this component.



36

The separated systemThe separated system

The separated system should look nearly 
identical to the previously constructed integrated 
system.
There are only two subtle differences shown on 
this slide and the following slide.  The buid_id
component is actually the dummy_build_id and 
the dut is actually the dummy_dut.
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The separated systemThe separated system
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Putting it all together.Putting it all together.
Once we have the viable 
SOPC system, we allow 
SOPC Builder to 
generate the system for 
us.
Now we need to tie the 
SOPC system module 
into the FPGA top level 
module, which can be 
done quite easily in a 
simple top level wrapper 
as shown to the right.
In this separated system 
flow, in addition to wiring 
up the clock and the reset 
from the I/O pins of the 
FPGA,  all the other 
module interconnection is 
done manually.
You can see the extra 
interface ports that have 
sprung out of the top level 
port map of the SOPC 
system.

module test_project_top (

input clk,
input reset_n

);

wire fast_clk;
wire slow_clk;
wire [31:0] avs_s0_readdata_from_the_build_id;
wire reset_n_to_the_build_id;
wire [15:0] asi_in0_data_to_the_dut_in0;
wire reset_to_the_dut_in0;
wire [15:0] aso_out0_data_from_the_dut_out0;

test_sys_sopc test_sys_sopc_inst (
// 1) global signals:
.clk (clk),
.fast_clk (fast_clk),
.reset_n (reset_n),
.slow_clk (slow_clk),

// the_build_id_s0
.avs_s0_readdata_from_the_build_id      (avs_s0_readdata_from_the_build_id),
.reset_n_to_the_build_id (reset_n_to_the_build_id),

// the_console_stream
.resetrequest_from_the_console_stream (),

// the_dut_in0
.asi_in0_data_to_the_dut_in0            (asi_in0_data_to_the_dut_in0),
.reset_to_the_dut_in0                   (reset_to_the_dut_in0),

// the_dut_out0
.aso_out0_data_from_the_dut_out0        (aso_out0_data_from_the_dut_out0)

);
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Putting it all together.Putting it all together.

So we create some wires and manually stitch the 
SOPC port map into the top level port maps of 
our other components.

my_build_id my_build_id_inst (
// Clock Interface
.csi_clock_clk (slow_clk),
.csi_clock_reset (reset_n_to_the_build_id),

// MM Slave Interface
.avs_s0_readdata                        (avs_s0_readdata_from_the_build_id)

);

my_dut my_dut_inst (
// Clock Interface
.csi_clock_clk (fast_clk),
.csi_clock_reset (reset_to_the_dut_in0),

// ST Sink Interface
.asi_sink_data (asi_in0_data_to_the_dut_in0),

// ST Source Interface
.aso_source_data (aso_out0_data_from_the_dut_out0)

);

endmodule



Accessing the hardware system 
from System Console.
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Running this example on a NEEK board.Running this example on a NEEK board.

This example has been provided with two project 
archives, one that illustrates the integrated system flow 
and the other illustrates the separated system flow.
You can use either one of these systems as an example 
that runs on the NEEK development board.
System Console TCL scripts are provided to allow very 
high level access and control over this hardware model.  
These scripts allow you to do things like:
− Validate the system ID peripheral.
− Display the build id value.
− Query or change the FIFO fill trigger level of the gate component.
− Create a binary test data file.
− Stream a binary data file thru the hardware design and capture the results 

into an output file.
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Getting into the System Console.Getting into the System Console.

To begin, select a example archive and expand it on your hard drive in 
a path that has no spaces in it.  Either example should be fine as they 
should both work identically.
Make sure that you have the 8.0SP1 Quartus II and Nios II 
development tools installed on your workstation.  You don’t need the 
Nios II tools to run System Console, but the following directions 
assume that you have them and makes use of various utilities 
provided in them.  This example does not discuss alternate ways of 
accomplishing the same results.
Connect your NEEK board to your workstation and power on the 
NEEK board.
Open a Nios II Command Shell
− Start -> Programs -> Altera -> Nios II 8.0 EDS -> Nios II 8.0 Command Shell

In the Nios II command shell change directory to the sc_tcl directory 
contained in the example design directory.
− cd "C:\bytestream_example\integrated_hw\sc_tcl“

Next we need to program the FPGA with the precompiled SOF file.
− nios2-configure-sof ../test_project_top.sof

Then we need to launch the System Console command shell.
− system-console --project_dir=..
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Operating within the system console shell.Operating within the system console shell.

Once the system console shell comes up, the first thing we need to do is initialize the shell with all 
of the scripts provided with this example.  The source code to these TCL scripts is available in the 
directory that we should be running out of, sc_tcl.  Source the initialization script like this:
− source sc_init.tcl

If that script runs successfully, then we should be able to validate the system ID peripheral in the 
FPGA with this command:
− sc_validate_sysid $sc_env

If we have valid hardware in the FPGA then we should be able to display the build id value with 
this command:
− sc_build_id_display $sc_env

Now if we want to test the hardware streaming, we can create a binary data file for testing with this 
command which creates an incrementing 16 bit value for the specified count into the specified file:
− sc_create_incrementing_test_file 1024 "test_data_1024.bin“

Now that we have some test data, we can pass it thru the hardware with this command:
− sc_test_stream $sc_env "test_data_1024.bin" "output_data.bin" 2048 3072

At this point the file “output_data.bin” should have the results that were collected from that data 
stream.  You should be able to spot the inverted values of that 16 bit incrementing pattern.  The 
pipeline depth of our hardware example is just 1, so the first 16 bit value should be whatever the 
last value was presented into the sink interface of our component.
Now we can change the gate trigger level and try a smaller pass of data, we change the trigger 
level with this command:
− sc_write_gate_trigger_level $sc_env 512

And now we modify the test command to account for less input data:
− sc_test_stream $sc_env "test_data_1024.bin" "output_data.bin" 1024 3072

In general while you are in system console you should be able to type “sc_<tab>” to have a list of 
all the commands beginning with “sc_” appear.  Then you can up or down arrow to select one.
You should also be able to type “help <command>” to get help for any given command.  All of the 
commands provided with this example should report help back, and hopefully it’s helpful.
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What’s the test doing?What’s the test doing?
The picture below illustrates what the streaming test is doing that we execute on the previous 
slide.
First system console opens the test data input file and reads in the binary data.
Then system console streams the data into the hardware system.
The “DSP Filter” in our example simply inverts the data.
Then system console streams the results out of the hardware and stores them in the output data 
file.
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SummarySummary

This presentation has illustrated how System Console 
and the JTAG components in SOPC Builder can quickly 
and easily be combined to create a test and analysis 
environment for streaming peripherals.
All of the source code for the TCL scripts as well as the 
HDL code for the hardware peripherals is provided in the 
example archives delivered with this example.  The TCL 
sources are contained in the “sc_tcl” directory, and the 
custom hardware sources are contained in the “ip”
directory.
For more information on the System Console and SOPC 
Builder, you should refer to their respective manuals, 
mentioned earlier in this presentation.
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