
BeMicro SDK
Embedded System Lab

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 1 November 2010

November 2010, Version 10.0 Tutorial

Table of Contents

MODULE 1: Getting Started.. 3
1.1 Acquire the BeMicro SDK Development Board ...3
1.2 Install the Altera Design Software ...3
1.3 Extract the BeMicro SDK Installation and Lab Files ..6
1.4 Install the USB-Blaster Device Driver...6

MODULE 2: Examine the System Design .. 8
2.1 Examine the System Tool Flow...8
2.2 Examine the BeMicro SDK Kit ...9
2.3 System Architecture...10

MODULE 3: Set Up the Quartus II Project ... 11
3.1 Create New Quartus II Project ...11
3.2 Add Files to the Project..11
3.3 Specify Family and Device Settings ..13
3.4 Select EDA Tool Settings ..13
3.5 Execute Setup Script ..14

MODULE 4: Build the SOPC System.. 15
4.1 Launch SOPC Builder..15
4.2 Manage Clocks ..15
4.3 Build the SOPC System...16
4.4 System Configuration ..35
4.5 Generate the System ..38

MODULE 5: Complete the Quartus II Project .. 40
5.1 Complete the Quartus II Project...40
5.2 Set up the Quartus II Project to point to the proper timing constraint files42
5.3 Download the FPGA configuration ...43

MODULE 6: Build the Software Application.. 45
6.1 Launch the Nios II Software Build Tools for Eclipse..45
6.2 Create a new software project in the SBT..46
6.3 Add source code to the project...47
6.4 Configure Board Support Package...48
6.5 Configure BSP Project Build Properties..49
6.6 Configure Application Project Build Properties ..50
6.7 Build the software project..51
6.8 Run the software application on the target...52
6.9 Software Application Output ...53
6.8 Interact with the Software Application ..56
6.9 Edit the Application ...56

Taking the Next Step... 57

Getting Started

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 2 November 2010

Overview

What Does It Take To Create Your Own Custom Processor-Based Embedded System?

This lab teaches you how to create a system implemented in programmable logic. You build a processor-based
hardware system and run software on it. As the lab progresses, you will see how quick and easy it is to build entire
systems using Altera’s SOPC Builder to configure and integrate pre-verified IP blocks.

Lab Notes:

Many of the names that the lab asks you to choose for files, components, and other objects in this exercise must be
spelled exactly as directed.

This nomenclature is necessary because the pre-written software application includes variables that use the names of
the hardware peripherals. Naming the components differently can cause the software application to fail.

There are also other similar dependencies within the project that require you to enter the correct names.

Note: This lab guide requires an Arrow Electronics BeMicroSDK FPGA-based MCU Evaluation Board
(www.arrow.com/bemicroSDK).

Getting Started

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 3 November 2010

MODULE 1: Getting Started

Module Objective

Your first objective is to ensure that you have all of the items needed and to install the tools so that you are ready to
create and run your design.

List of required items

� Arrow Electronics BeMicro SDK FPGA-based MCU Evaluation Board

� Design Software (Quartus® II design software v10.0., Nios® II EDS 10.0, Micrium uC/Probe)

� Intel Pentium III or compatible Windows PC, running at 866MHz or faster, with a minimum of 512MB of system
memory. NOTE REGARDING LAB SUPPORTED OPERATING SYSTEMS: 32 bit versions of Windows XP,
Windows Vista and Windows 7 are supported by software tools required for this lab. NO 64 bit versions are
supported

� Lab Design Files

1.1 Acquire the BeMicro SDK Development Board

This development kit can be ordered from http://www.arrow.com/bemicrosdk.

1.2 Install the Altera Design Software

You will need to install ALL of the following design software packages:

Getting Started

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 4 November 2010

1) Quartus II Web Edition design software v10.0 – FPGA synthesis and compilation tool that contains SOPC
Builder and the MegaCore IP library with the Nios II processor IP core

2) Nios II EDS v10.0 – A complete integrated development environment for software development

The Quartus II design software and the Nios II EDS are available via the Altera Complete Design Suite DVD or by
downloading from the web.

If you already have both Quartus II and the Nios II EDS installed on your machine, you may skip ahead to Section 1.3
to extract the lab files.

INSTALLING FROM THE DVD-ROM : Please skip ahead to step 4 of the installation instructions.

INSTALLING FROM THE WEB : Please follow steps 1 through 4 of the installation instructions.

The Web Edition can be downloaded from the Altera web site. Please carefully follow the steps shown below.

 1. Go to the Altera Download web page at https://www.altera.com/download/dnl-index.jsp

 2. Login to myAltera account. Use your existing login, or get One-Time Access

 3. Altera Installer Setup. Run the Altera Installer and Navigate to the Installer Setup page. Select the
Download Installation Files from the Internet radio button

Download the Windows
Version of the Altera Installer

Get One-Time Access

Login to existing account

Getting Started

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 5 November 2010

 4. Select Components. Select Quartus II Software Web Edition and Nios II Embedded Design Suite
components for download.

Select this Radio Button

Select these components

Getting Started

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 6 November 2010

1.3 Extract the BeMicro SDK Installation and Lab Files

Download the BeMicroSDK.zip ZIP archive from the http://www.arrow.com/bemicrosdk web page to a folder on your
PC. Make sure that there are NO SPACES in the directory path.

Note: By installing the software onto your PC you are bound to the license agreement of the software. The complete
license agreement can be found in the license_agreement.txt file found in the “<install directory>\driver\” directory.
This license agreement, in short, allows you to use the software only in conjunction with Altera FPGA devices
purchased from Arrow Electronics or a subsidiary of Arrow.

1.4 Install the USB-Blaster Device Driver

After the Quartus II and Nios II software packages are installed, you can plug the BeMicro SDK board into your USB
port. Your Windows PC will find the new hardware and a then the “Found New Hardware Wizard” will come up and
request that the driver needs to be installed:

Select “Install from a list or specific location (Advanced)” and continue through the wizard.

In the next dialogue box point the wizard to the drivers which can be found in your Quartus installation directory under
“<install directory>\10.0\quartus\drivers\usb-blaster”. If Windows presents you with a message that the drivers have
not passed Windows Logo testing, please click “Continue Anyway”.

Getting Started

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 7 November 2010

If you have trouble with the USB-Blaster installation, please contact your Arrow FAE.

CONGRATULATIONS!!

You have just completed all the setup and installation requirements and are now ready to

examine the system-level design.

Examine the System Design

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 8 November 2010

MODULE 2: Examine the System Design

Module Objective

Developing software for an Altera System on a Programmable Chip (SOPC) requires an understanding of the design
flow between the SOPC Builder system tool and the Nios II Embedded Development Suite (EDS). Typically, design
requirements begin with customer requirements and become inputs to system definition. System definition is hence the
first step in the design flow process. For this lab, the system definition and design is complete and an FPGA image
derived from that has been flashed into the BeMicro SDK kit. Our objective is to learn how to use the Nios II EDS to
build software projects for this system. The objective of this module is to examine the system architecture and
development tools that you will be using today.

2.1 Examine the System Tool Flow

Define System

● Select IP
● Make Connections
● Generate System

FPGA Design

● Edit
● Assign Pin-out

● Timing Constraints

● Compile
● Download

Configure FPGA Download Application

SOPC Builder

Software
Development

● Add Source Files
● Edit
● Build

● Debug
● Run

Nios II IDEQuartus II

Target
Hardware

Target

HDL Files System Description

The above diagram depicts the typical flow for system design. System definition is performed using SOPC Builder.
The results are two-fold:

� System description that the Nios II Integrated Development Environment, the software design tool, uses to
create a new project for the software application.

Examine the System Design

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 9 November 2010

� HDL files for the system that are used by the Quartus II FPGA design software to compile and generate
the hardware system.

The output of the Hardware Flow is an FPGA image that is used to configure the FPGA. This flow has been completed
for you and the FPGA image has been flashed into the BeMicro SDK kit. The output of the Software Flow is an
executable from which the Nios II processor executes instructions.

2.2 Examine the BeMicro SDK Kit

Examine the components on the BeMicro SDK board hardware:

A Micro–SD card connector is located on the reverse side of the board. An Altera serial flash device is also located on
the reverse side. This is used to configure the FPGA hardware image and store CPU boot images.

Altera 60nm
Cyclone IVE FPGA

with 22k LEs

8 User LEDs Micron Mobile DDR
512 Mbit

National 10/100
Ethernet PHY

National Temperature
Sensor USB-Blaster

CPU Reset
LTC Power Supplies

Examine the System Design

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 10 November 2010

2.3 System Architecture

The BeMicro SDK kit is architected using the components shown in the sketch below:

The system above can be created in SOPC Builder using a standard library of re-useable IP blocks. The System
Interconnect Fabric is automatically generated by SOPC Builder and binds the blocks together. The system
interconnect manages dynamic bus-width matching, interrupt priorities, arbitration and address mapping. This system
is a full-featured processor system capable of running operating systems such as uC-OSII or Linux.

The following pages will guide you through the process of building a basic embedded system. You will build up a
subset of the system shown above.

 System Interconnect Fabric

 Nios II

/f

CPU

 SDRAM

controller
 FIR Filter

Accelerator
 Ethernet

controller
 SD Card

controller
 Temperature

sensor

SPI

 PLL

System

Timer

 High

Resolution

Timer

 LED

PIO
 Pushbutton

PIO
 JTAG

UART
 JTAG

UART

To bank of 8

LEDs

To uCProbe

console via

JTAG

To Nios II

console via

JTAG

From user

pushbutton

To mobile

SDRAM

To Ethernet

PHY

To temperature

sensor

 EPCS

controller

To SD card

From 50 MHz

oscillator

To EPCS serial

Flash

Set Up the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 11 November 2010

MODULE 3: Set Up the Quartus II Project

In this section, you create a new Quartus II project to contain the SOPC Builder system. The top level is a schematic
file, which at this stage is a placeholder containing some minimal reset logic, i.e. a counter that issues a reset to the
SOPC system in response to a hard reset.

In addition you will specify I/O constraints and settings for this design by executing a Tcl script.

3.1 Create New Quartus II Project

� Launch the Quartus II 10.0 software from Start -> All Programs -> Altera.

� Click on File -> New Project Wizard. This will launch the New Project Wizard. An “Introduction”
dialogue box may appear. If so, click Next to move to the dialogue box for the Name, Directory and Top-
Level Entity.

� For the working directory for the project, click the Browse button indicated by the “…” symbol and
navigate to the folder ‘bemicrosdk_embedded_hw_lab’ located in the unzipped lab design files. This
will be the working directory for your project.

� Name the project “nios2_bemicro”.

� For the top-level entity click on “…” and select “BeMicroII_schem” if you prefer to work with a top-
level schematic. You may alternatively select “BeMicroII_ver ” if you prefer to work with a top-level
Verilog file.

� Click Next.

3.2 Add Files to the Project

� In the Wizard window page 2 of 5 you will add files to the new project.

Set Up the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 12 November 2010

� Click the Browse button and navigate to the project directory and open the folder entitled
“bemicrosdk_embedded_hw_lab”.

� Select and click Open to add the appropriate top-level file that you chose in the previous step:

a. BeMicroII_schem.bdf : This is the top-level schematic entity for the Quartus II Project.
or

b. BeMicroII_ver.v : This is an alternate top-level Verilog entity for the Quartus II Project.

� Click Add to add the files listing chart.

After adding the file, page 2 should show the top-level file that you selected as shown below. Click Next.

or

Set Up the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 13 November 2010

3.3 Specify Family and Device Settings

In this page you select Cyclone® IV EP4CE22F17C7 device, which is the device mounted on the BeMicro circuit
board.

• First you will need to select Cyclone IV E from the Family pulldown.
• You can then use the “Show in ‘Available devices’ list” option to filter the list of available devices to make

selection easier. Select FBGA for the package type, 256 for the pin count and
7 for the speed grade. This will give you a shorter list of devices to choose from.

• Select EP4CE22F17C7 from the “Available devices” list as shown below.

Click Next.

3.4 Select EDA Tool Settings

� Leave <None> selected for all of the options as we will not be using any third party EDA tools. Click
Next.

� You will see a Summary page. Click Finish.

Set Up the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 14 November 2010

3.5 Execute Setup Script

The I/O pin constraints have been programmed into a Tcl script in order to set up the Quartus II project properly.

� Under the Tools menu, select “Tcl Scripts…”.

� In the Tcl Scripts dialog box choose the “pin_assignments.tcl” script.

� Click Run.

Quartus II will display a message indicating that the Tcl script successfully ran:

Click “OK ” to dismiss this message.

Click “Close” to exit the Tcl Script dialogue box.

CONGRATULATIONS!!

Your Quartus II project is set up. You are ready to start building your SOPC system.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 15 November 2010

MODULE 4: Build the SOPC System

Module Objective

In this module you add the standard and custom components to the system, make connections where required,
assign the clocks, set arbitration priorities and generate the system.

4.1 Launch SOPC Builder

� From the Tools menu, select “SOPC Builder”. There may be a slight delay while the SOPC Builder
application launches.

� In the “Create New System” dialog, select Verilog and enter the system name as “nios2_bemicro_sopc”.

� Click OK .

4.2 Manage Clocks

There is a 50 MHz oscillator on the BeMicro SDK, and this will be the clock source input. Other clocks are also
required for the SOPC system components as well as for external components such as the SRAM. A PLL will be
used to provide these clocks. The following table reviews the clocking scheme:

Clocking Scheme
Component Name Input Clock

Frequency
Source Designation

1. PLL 50 MHz Oscillator on
BeMicro SDK

ext_clk_50

2. Nios II processor and Mobile
DDR SDRAM Controller

100 MHz Output ‘c0’ of PLL pll_c0

3. Ethernet MAC and SD Card
Host Controller

60 MHz Output ‘c1’ of PLL pll_c1

4. Slow Peripherals 40 MHz Output ‘c2’ of PLL pll_c2

Perform the following instructions to build the system. It is helpful to have the rough sketch of your system handy
so you can follow along.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 16 November 2010

4.3 Build the SOPC System

1. Define the external 50.0 MHz clock source

Reason: The clock coming into the FPGA is sourced by an on-board 50 MHz crystal oscillator. This clock source
will feed our SOPC Builder system

� Click into the clk_0 field and rename it from clk_0 to ext_clk_50.

� The default frequency already filled in is 50.0 MHz. Leave the frequency set at 50.0.

.

2. Add an Avalon ALTPLL

Reason: This peripheral instantiates a PLL which will generate the clocks for the system.

From the Component Library pane, expand PLL and double click on Avalon ALTPLL .

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 17 November 2010

� “General/Modes” tab (Page 1) of PLL MegaWizard. Change the frequency of the clock input to 50 MHz.
This source is provided by the oscillator on the BeMicro SDK.

Click Next to move to the next tab of the wizard. (You may need to scroll down to see the Next button.)

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 18 November 2010

� “Inputs/Lock” tab (Page 2): Uncheck both “Create an ‘areset’ input to asynchronously reset the PLL”
and “Create ‘locked’ output” options.
Accept all other defaults.

� Pages 3-5: Accept all defaults.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 19 November 2010

� “c0 Core/External Output” (Page 6): Click “Enter output clock frequency”. Configure c0 as 100 MHz
output. Click on the “Enter output clock frequency” button and enter 100 MHz. This clock will be used as the
processor system clock, clocking the Nios II processor and the DDR SDRAM.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 20 November 2010

� “c1 Core/External Output” (Page 7): Click “Enter output clock frequency”. Configure c1 as 60 MHz
output. Check the “Use this clock” button. Click on the “Enter output clock frequency” button and enter 60
MHz . This clock will be used to clock the Ethernet and SD card components.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 21 November 2010

� “c2 Core/External Output” (Page 8): Click “Enter output clock frequency”. Configure c2 as 40 MHz
output. Check the “Use this clock” button. Click on the “Enter output clock frequency” button and enter 40
MHz . This clock will be used to clock various peripherals in the system.

� Click Finish. This will take you to the summary tab.

� Click Finish again to close the ALTPLL MegaWizard.

� A component entitled “altpll_0” should appear under Module Name. Rename the Avalon ALTPLL
component from “altpll_0” to “pll ”. (You can right click to bring up a menu with a rename option.)

� Ensure that the name of the PLL is “pll”. In
the Clock Settings window (top right), the pll
clock and the source clock should appear as
shown here.

An error will appear in the bottom console indicating that the pll_slave port of the pll peripheral is not connected
to a master. Ignore this for now. We will address connections in the upcoming steps.

3. Add a Nios II Processor

Reason: A CPU is needed to run the software applications.

� From the Component Library pane, under the Library. Expand Processors and double click on Nios II
Processor.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 22 November 2010

� Ensure that the Nios II/f core is selected. There are numerous options on the various pages of the MegaWizard.
All the defaults should be accepted. Click Finish.

� Rename the component “nios2_cpu”.

Occasionally save your work using Save on the File menu.

4. Configure clocks for the initial components

� At this point there are 2 components in the system. From the drop-down list in the Clock column, ensure that
the PLL is set up with the ext_clk_50 source, and then change the setting for the nios2_cpu to be driven by
the pll_c0 source.
Since the nios2_cpu is driven by ext_clk_50, click on that field and change the selection to pll_c0 as shown
below:

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 23 November 2010

5. Add an on-chip RAM

Reason: Altera FPGAs provide internal on-chip memory blocks that can be used to build up an internal RAM (or
ROM) block of memory. This provides the processor with access to very low-latency, high-speed memory for code
or variable storage.

� Expand Memories and Memory Controllers. Expand On-Chip and double click on On-Chip Memory
(RAM or ROM) .

� Set the “Total memory size” to 32 KBytes. Click Finish.

� Right click on the Name field and choose Rename from the pop up menu. Name this RAM component
“onchip_ram”.

The cpu/instruction_master and cpu/data_master should already be connected to the
onchip_sram/avalon_slave of this interface.

6. Add an EPCS Serial Flash Controller

Reason: Altera FPGAs are volatile and require an external device to provide them with their configuration. There
are many different configuration schemes available. On the BeMicro SDK, an Altera 16 Mbit EPCS device (serial
config flash) is used. The EP4CE22 device requires 5.8 Mbits of configuration data, which means there will be
roughly 10 Mbits of serial flash remaining in the EPCS16 device. The EPCS Controller provide access to the serial

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 24 November 2010

config flash during run-time and the remaining space in the serial config flash can be used as a serial flash for code
or data storage.

� Expand Memories and Memory Controllers. Expand Flash and double click on EPCS Serial Flash
Controller .

� Leave the options at the default settings and click Finish.

� Rename the component from epcs_flash_controller_0 to epcs_flash_controller.

7. Add Avalon-MM Clock Crossing Bridge Peripheral for the “slow” peripherals.

Reason: A clock crossing bridge is required because the Nios II processor and the slow peripherals run in different
clock domains.

� From the System Contents menu, expand Bridges and Adapters. Expand Memory Mapped and double
click on Avalon-MM Clock Crossing Bridge.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 25 November 2010

� Change the Slave-to-master FIFO depth to 32. Click Finish.

� Right click on the Name field and choose Rename from the pop up menu. Name this bridge
“slow_periph_bridge”.

The nios2_cpu’s instruction_master and data_master ports should already be connected to the s1 slave
port of this bridge. The m1 master port will be connected in the upcoming steps.

8. Add a 10 ms Interval Timer Peripheral

Reason: Many software applications require periodic interrupts to maintain various time bases and timing
requirements within the application.

� From the System Contents menu, expand Peripherals, expand Microcontroller Peripherals and double
click on Interval Timer .

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 26 November 2010

� Change the timer interval to 10 ms. Click Finish.

� Rename the component “sys_timer”.

� Change the connection on the s1 slave port of the peripheral to be connected to the m1 master port of the
slow_periph_bridge. To do this you will need to hover your mouse over the connections area so that the
connection options appear. Then click on the appropriate circles to disconnect the s1 port from the
nios2_cpu data_master port and instead connect it to the slow_periph_bridge m1 port. When you move
your mouse cursor away, the connections should look as shown in the figure on the right below:

9. Add a 1 ms Interval Timer Peripheral

Reason: The Nios II HAL library provides a high resolution timer facility that allows software applications to
measure time at the system clock rate. A second timer peripheral is useful for this.

� From the System Contents menu, expand Peripherals, expand Microcontroller Peripherals and double
click on Interval Timer .

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 27 November 2010

� Accept the default settings. Click Finish.

� Rename the component “high_res_timer”.

� Similar to what was done with the previous interval timer, change the connection on the s1 slave port of
the peripheral to be connected to the m1 master port of the slow_periph_bridge.

10. Add a Performance Counter

Reason: The performance counter peripheral is a block of counters for timing sections in your software code. With
it you can accurately measure execution-time taken by blocks of C-code. Simple, efficient, minimally-intrusive
macros allow you to mark the start and end of blocks-of-interest in your program.

� From the System Contents menu, expand Peripherals, expand Debug & Performance and double click
on Performance Counter Unit.

� Accept the default setting of 3. Click Finish.

� Rename the component “performance_counter”.

� Similar to what was done with the previous peripherals, change the connection on the s1 slave port of the
peripheral to be connected to the m1 master port of the slow_periph_bridge.

11. Add PIO Peripheral for LEDs

Reason: The BeMicro SDK has 8 LEDs on it. You can drive these LEDs with an output PIO peripheral. We will
drive 7 of the LEDs with a PIO peripheral. (The 8th LED will be controlled by a custom PWM peripheral added in
the next step.)

� From the System Contents menu, expand Peripherals, expand Microcontroller Peripherals and double
click on PIO (Parallel I/O) .

� Set the “Width ” to 7 bits. Ensure that the “Direction” is set to “Output ports only”. Click Finish.

� Rename the peripheral “led_pio”.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 28 November 2010

12. Add PWM Peripheral

Reason: We will use the custom PWM component to control the intensity of the 8th LED.

� From the Project section of the Components Library, expand BeMicro Components and double click
on Simple PWM. NOTE: This is a very simple custom component developed for educational purposes
and the source code for this component is found in the ip/simple_pwm/ subdirectory within the lab project.

� Rename the peripheral “led_pwm”.

13. Add PIO Peripheral for DIP Switches

Reason: The BeMicro SDK has 2 DIP switches on it. You can use an input PIO peripheral to read in the DIP
switch settings.

� From the System Contents menu, expand Peripherals, expand Microcontroller Peripherals and double
click on PIO (Parallel I/O) .

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 29 November 2010

� Set the “Width ” to 2 bits. Set “Direction” to “Input ports only ”.

� Click Next

� On the Input Options tab, check the Synchronously capture and Either edge options:

� Click Next

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 30 November 2010

� On the Simulation tab, check the Hardwire PIO inputs in the test bench option and drive the inputs to
0x3:

� Click Finish

� Rename the peripheral “dipsw_pio”.

� Similar to what was done with the previous peripherals, change the connection on the s1 slave port of the
peripheral to be connected to the m1 master port of the slow_periph_bridge.

14. Add PIO Peripheral for Pushbutton Switch

Reason: The BeMicro SDK has a pushbutton switch labeled “User” connected to one of the FPGA I/O pins. You
can use an input PIO peripheral to detect when this pushbutton has been pressed and signal an interrupt to the
processor.

� From the System Contents menu, expand Peripherals, expand Microcontroller Peripherals and double
click on PIO (Parallel I/O) .

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 31 November 2010

� Set the “Width ” to 1 bit. Set “Direction” to “Input ports only ”.

� Click Next

� On the Input Options tab, check the Synchronously capture and Falling edge options in the Edge capture
register section. Also check the Generate IRQ and Edge options in the Interrupt section:

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 32 November 2010

� Click Next

� On the Simulation tab, check the Hardwire PIO inputs in the test bench option and drive the inputs to
0x1:

� Click Finish

� Rename the peripheral “user_pio_pushbtn”.

� Similar to what was done with the previous peripherals, change the connection on the s1 slave port of the
peripheral to be connected to the m1 master port of the slow_periph_bridge.

15. Add SPI Peripheral for accessing the On-board Temperature Sensor

Reason: The BeMicro SDK has a SPI temperature sensor device. You can use the SPI peripheral to access this
temperature sensor device.

� From the System Contents menu, expand Interface Protocols, expand Serial and double click on SPI (3-
wire serial).

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 33 November 2010

� The default settings are acceptable. Click Finish.

� Rename as “temp_sense_spi”.

� Similar to what was done with the previous peripherals, change the connection on the s1 slave port of the
peripheral to be connected to the m1 master port of the slow_periph_bridge.

16. Add JTAG UART Peripheral

Reason: Many software developers like to have access to a debug serial port from the target to leverage printf
debugging, input control commands, log status information, etc. The JTAG UART peripheral connects to the
debugger console and is useful for these purposes.

� From the System Contents menu, expand Interface Protocols, expand Serial and double click on JTAG
UART .

� The default settings are acceptable. Click Finish.

� Rename as “jtag_uart ”.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 34 November 2010

� Similar to what was done with the previous peripherals, change the connection on the s1 slave port of the
peripheral to be connected to the m1 master port of the slow_periph_bridge.

17. Add a System ID

Reason: This is a VERY IMPORTANT peripheral to have in your system. It allows the Nios II development tools
to validate that the software application is being built for the correct hardware system.

� From the System Contents menu, select Peripherals -> Debug and Performance -> System ID Peripheral.
Double click to add the component to the system.

� The sysid dialog box appears. Click Finish.

� Rename as “sysid”. The component must be named “sysid” to be compatible with Nios II software drivers
and build tools.

� Once again, change the connection on the s1 slave port of the peripheral to be connected to the m1 master port
of the slow_periph_bridge.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 35 November 2010

18. Add a Remote Update Controller

Reason: Cyclone IV FPGAs have a Remote Update feature which allows you to store an updated FPGA image in
the config flash and then have the FPGA reconfigure itself with an updated image.

� From the System Contents menu, select Peripherals -> FPGA Peripherals -> Remote Update Controller.
Double click to add the component to the system.

You will notice an error indicating the the Remote Update Controller cannot be clocked any higher than 40
MHz. We have not yet configured the clock sources in our system. We will clear up this error a bit later when
we set the clock sources for our components.

� Rename the component “remote_update_blk”.

� Once again, change the connection on the s1 slave port of the peripheral to be connected to the m1 master port
of the slow_periph_bridge.

At this point all the components to the SOPC system have been added. Now you need to resolve the lingering
system validation errors that have arisen during the design.

4.4 System Configuration

1. Clock source for each component

We need to change the clock source for each of the components such that only the PLL has ext_clk_50 selected in
the Clock” column and that the nios2_cpu, onchip_ram, epcs_flash_controller and the s1 port of the
slow_periph_bridge have pll_c0 selected for their clock sources. The m1 port of the slow_periph_bridge and all
remaining components will have pll_c2 selected for their clock sources.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 36 November 2010

Ensure that your clock sources are configured as shown below.
Also, confirm that your connections are as shown in the connections column. You may have missed the previous
steps to modify these connections as you were adding the components.

2. Set Base Addresses and Interrupt Priorities

SOPC Builder provides two easy menu items that help clean up address map issues and interrupt priority issues.

� From the System menu, choose Auto-Assign Base Addresses. The tool will assign appropriate base addresses
for the components by taking their widths into consideration.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 37 November 2010

� From the System menu, choose Auto-Assign IRQs. The tool will update the IRQ mapping accordingly.

At this point you should only be left with a couple of information messages and reminders that you have yet to
specify the CPU reset and exception address configuration.

3. Nios II Boot Configuration

In the event of a reset, the software must begin executing from a predefined memory location. This is set by setting
the reset vector. Similarly when a software exception event occurs the software must jump to a pre-defined
location where the exception handling software resides. This location is set by setting the exception vector.

� Double click on the cpu peripheral to launch the “Nios II Processor Parameter Settings” GUI.

� Set the Reset Vector to point to the epcs_flash_controller with an offset of 0x0. When the Nios II processor
comes out of reset, it will begin executing software at this memory location.

� Set the Exception Vector to point to the onchip_ram memory with an offset of 0x20. When the Nios II
processor experiences software exceptions or interrupts, it will jump to this location in memory.

Click Finish.

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 38 November 2010

This concludes the system configuration. At this point you should have addressed all the system validation issues and
can now generate the SOPC Builder System.

THE RESULTING SOPC SYSTEM

4.5 Generate the System

Please Double-check to make sure that all the component names in your SOPC system match the
component names shown above. Do not worry if the base and end addresses do not match exactly.

Click the Generate button. SOPC Builder will now create:

Build the SOPC System

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 39 November 2010

• The HDL for the various components in your system
• System interconnect to connect the components together
• System description file used by the software development tools (the Nios II SBT) to build the

software project

Once your system has been successfully generated you will see the info message “Info: System generation was
successful”. Exit SOPC Builder by clicking the Exit button and click Save when it asks if you’d like to save
the system.

CONGRATULATIONS!! You have just built your first SOPC system!

Complete the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 40 November 2010

MODULE 5: Complete the Quartus II Project

Module Objective

In this module you complete the Quartus II project by adding the generated SOPC system to the top-level entity.
Compile in the Quartus II software to perform analysis, synthesis, fitting, place and route as well as timing analysis.
At the end of the compilation, an FPGA image or SRAM object file (*.SOF) will be generated. The FPGA image
can be downloaded to the BeMicro SDK, at which point the on-board FPGA will function as a processor custom-
made for your application.

5.1 Complete the Quartus II Project

Note: The following step is only required if you chose the schematic as your top level file at the beginning of
the lab.

� In the Project Navigator window pane in the Quartus II software, select the Files tab and open the
BeMicro _schem.bdf by double clicking it.

Examine the BeMicroII_schem.bdf shown below:

Complete the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 41 November 2010

The pins required by the design as well as some reset logic are present, but the main block of logic
representing the SOPC Builder system is missing. Add the SOPC Builder system instance to this top level.

� From the Edit Menu, click on Insert Symbol.
� In the Libraries pane expand the Project folder and choose the nios2_bemicro_sopc symbol. Then click

OK .

� Align the symbol within the schematic and place the instance into the schematic. You may need to move
the connector pins to align them with the pins of the symbol.

Complete the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 42 November 2010

5.2 Set up the Quartus II Project to point to the proper timing constraint files

Reason: Similar to ASIC design, FPGAs require timing analysis since routing within the FPGA device will
vary based on where the Quartus II Fitter places the logic. Entering timing constraints will provide the
Quartus II Fitter with design goals to make intelligent choices about where to place the logic and other
elements in the design and then will provide the Quartus II TimeQuest Timing Analyzer with information so
that it can report whether we have met our timing goals. The constraints are coded in an industry standard
language called SDC (Synopsis Design Constraints).

SOPC Builder automatically generated SDC files for components which provide timing information. In our
system, only the Nios II CPU has generated SDC files. In addition, an SDC file called bemicro_lab.sdc is
included with the lab files and instructs TimeQuest to determine our clock rates by analyzing the PLL. We
must set up our Quartus project to point to these SDC files.

� From the Assignments menu in the Quartus II software, select Settings.
� Expand Timing Analysis Settings and select TimeQuest Timing Analyzer
� In the “SDC files to include in the project” click on the “…” and select the BeMicroII.sdc file found in

the project directory. Click on the “Add” button to add it to the list of SDC files.

At this point the design is ready for compilation.

� Click the Start Compilation button on the Quartus II tool bar.

Complete the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 43 November 2010

The Quartus II software will take a few minutes to compile the design. There should be no errors in the
compile, and you should see the successful completion dialog when it is finished. You will see some warnings
that relate to the files from the automatically generated system, missing assigments/features and incomplete pin
assignments but these will not affect the functionality of the system.

The output of the compilation is a SOF file entitled “BeMicroII.sof” if you have a Nios II license or
“BeMicroII_time_limited.sof” if you do not have a license.

5.3 Download the FPGA configuration

Ensure that your BeMicro kit is plugged into your PC USB port and launch the Quartus II Programmer to
configure the FPGA.

� Click on the Programmer icon on the Quartus II desktop, or alternatively open the Programmer from the
Tools menu.

� In Quartus II Programmer click Hardware Setup. In the Currently selected hardware drop box select
Arrow-USB-Blaster. Click Close. Click on Auto Detect.

� After clicking the Auto Detect button you should find that the programmer detects the EP4CE22 device
on your BeMicro SDK.

� Double click on the <none> in the File field, or select <none> and click on the Change File button.

� Select bemicro_lab_***.sof. Click Open.

Complete the Quartus II Project

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 44 November 2010

� After selecting your SOF file, click on the Program/Configure checkbox.
� Press the Start button to program the FPGA.

After programming the FPGA the progress indicator should indicate 100% complete, and there should be no
error messages displayed.

NOTE: If you do not have a license for the Nios II processor then your system would have generated the Nios
II in OpenCore Plus evaluation mode and your sof programming file will be time-limited. If you are running
with a time-limited SOF file, then this window pops up on the Quartus II Programmer.

Just leave this up and do not press “Cancel” until you are finished using the hardware design that you just
downloaded. Closing this dialog will halt the Nios II CPU inside the FPGA.

CONGRATULATIONS!!

You have just compiled and downloaded the FPGA image onto the target. The processor is ready

to run, so all you need to do now is develop the software application and download it to the

target.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 45 November 2010

MODULE 6: Build the Software Application

Module Objective

In this module you use the Nios II Software Build Tools (SBT) for Eclipse to develop the software application that will
run on your system. You will create a new software application project, add the software source files to the project,
configure the project and build it. The result of the build is an executable (ELF). The application will be downloaded
into memory from where it will be executed.

6.1 Launch the Nios II Software Build Tools for Eclipse

Launch the Nios II SBT from the Start -> All Programs -> Altera -> Nios II EDS 10.0 -> Nios II 10.0
Software Build Tools for Eclipse or alternatively it can be launched from the SOPC Builder -> Nios II menu.

1. Initialize Eclipse workspace

When Eclipse first launches, a dialogue box appears asking what directory it should use for its workspace. It is
useful to have a separate Eclipse workspace associated with each hardware project that is created in SOPC
Builder.

� Browse to the directory that you created the Quartus II project in and click Make New Folder to create a
folder for your software project. Name the folder “eclipse_workspace”.

After selecting the workspace directory, click “OK ” and Eclipse will launch and the workbench will appear in the Nios
II perspective.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 46 November 2010

6.2 Create a new software project in the SBT

Select File -> New -> Nios II Application and BSP from Template.

� To set the SOPC Information File, click the Browse button to locate the bemicro_system.sopcinfo file
located in the Quartus II project directory.

� Set the name of the Application project to “bemicro_led_control”.
� Select the Blank Project template under Project Template.
� Click the Finish button.

The tool will create two new software project directories

Each Nios II application has 2 project directories in the Eclipse workspace.

a. The application software project itself - this where the application lives.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 47 November 2010

b. The second is the Board Support Package (BSP) project associated with the main application
software project. This project will build the system library drivers for the specific SOPC system. This
project inherits the name from the main software project and appends “_bsp” to that.

Initial content of the project

Since you chose the “blank” project template, there are no source files in the application project directory at
this time. The BSP contains a directory of software drivers as well as a system.h header file, system
initialization source code and other software infrastructure.

6.3 Add source code to the project

In Windows Explorer locate the project directory which contains a directory called “software_source_files”
which contains a directory called “bemicro_led_control_src”. This directory contains an “inc” directory,
“src” directory and “main.c” file. You will copy these files and directories from Windows Explorer into the
Eclipse software project directory, “bemicro_led_control”.

� Select the 3 files and drag them over the “bemicro_led_control” directory in the SBT window and drop
the files onto the project folder.

� This should cause the source files to be physically copied into the
file system location of the software project directory and register
these source files within the Eclipse workspace so that they appear
in the Project Explorer file listing.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 48 November 2010

6.4 Configure Board Support Package

� Configure the board support pakcage to specify the properties of this software system by using the BSP Editor tool.
These properties include what interface should be used for stdio and stderr messages, which memory should stack
and heap be allocated in and whether an operating system or network stack should be included with this BSP.

� Right click on the bemicro_led_control_bsp project and select Nios II -> BSP Editor… from the right-click
menu.

The software project provided in this lab does not make use of an operating system. All stdout, stdin and stderr
messages will be directed to the jtag_uart . The auto-generated linker script will be used and the various linker sub-
sections (Program memory, Read-only data memory, Read/write data memory) will be stored into onchip_ram. We
will point the linker to place the heap and stacks in onchip_ram memory.

In the “Common” settings view, change the following settings:

� Select the sys_timer peripheral as the hardware for the sys_clk_timer.

� Select the high_res_timer peripheral as the hardware for the timestamp_timer.

� Ensure that onchip_ram is selected as the linker target for both the exception_stack_memory_region_name and
the interrupt_stack_memory_region_name.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 49 November 2010

You may wish to click on the Drivers tab to observe how the BSP Editor gives you control over what drivers will be
built into your Board Support Package. Similarly, you may wish to look over the Linker Script tab to observe how the
BSP Editor provides you with a mechanism to adjust what memory regions the linker will utilize. In the case of this
lab, we have only one volatile memory in the system, but for systems with multiple memories, this is a handy tool.

� Select File -> Save to save the board support package configuration to the settings.bsp file.

� Click the Generate button to update the BSP.

� When the generate has completed, select File -> Exit to close the BSP Editor.

6.5 Configure BSP Project Build Properties

In addition to the board support package settings configured using the BSP Editor, there are other compilation settings
managed by the Eclipse environment such as compiler flags and optimization level.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 50 November 2010

� Right click on the bemicro_led_control_bsp software project and select Properties from the right-click menu.

� On the left-hand menu, select the Nios II BSP Properties tab

� During compilation, the code may have various levels of optimization which is a tradeoff between code size and
performance. Change the Optimization level setting to Level 2.

� To keep the software footprint compact, choose Reduced device drivers.

� Since our software does not make use of C++, uncheck “Support C++”.

� Click Apply . Click OK .

6.6 Configure Application Project Build Properties

Just as you configured the optimization level for the BSP project, you should set the optimization level for the
application software project “bemicro_led_control” as well.

� Right click on the bemicro_led_control software project and select Properties from the right-click menu.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 51 November 2010

� On the left-hand menu, select
the Nios II Application
Properties tab

� Change the Optimization level
setting to Level 2.

� Click Apply . Click OK .

6.7 Build the software project

� Right click the bemicro_led_control_bsp software project and choose Build Project to build the board support
package.

� When that build completes, right click the bemicro_led_control application software project and choose Build
Project to build the Nios II application.

These 2 steps will compile and build the associated board support package, then the actual application software project
itself. The result of the compilation process will be an Executable and Linked Format file for the application, the (*.elf)
file.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 52 November 2010

6.8 Run the software application on the target

To run any application on the target hardware, two images are needed

• The FPGA hardware image SRAM Object File <.SOF>.

• The software executable the <.ELF>.

In the previous module you already downloaded the .SOF, so the FPGA is primed and ready to run the software
application. Keeping the BeMicro kit still plugged into the USB port, you will download the application via the USB-
JTAG link. To run the software project on the Nios II processor:

• Right click on the software project directory and choose Run As and Nios II Hardware .

This will re-build the software project to create an up–to-date executable and then download the code into memory on
our BeMicro hardware. The debugger resets the Nios II processor, and it executes the downloaded code.

You may receive a message that your target connection could not be determined, and a “Run Configuration” dialogue
window will be presented to you. If the “USB-Blaster” does not appear in the Connections lists, then scroll to the right
and click on “Refresh Connections” and then select “USB-Blaster”. If more than one JTAG cable is shown in the list
then be sure to select the “USB-Blaster” connection. Then click the Apply button and then the Run button.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 53 November 2010

6.9 Software Application Output

Once the application starts executing, it will relay the messages back to the Nios SBT via the JTAG UART interface
and the messages from this interface will be placed into a new “Nios II Console” pane within the Eclipse GUI. Eclipse
places this console in a somewhat inconvenient location on the right of the window which is too narrow for viewing
our console output properly. You will need to move this pane to another portion of the Eclipse GUI, resize the pane or
maximize the pane in order to see the full console output. An example of how to move the pane is shown below.

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 54 November 2010

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 55 November 2010

If the application is executing successfully, the console output should appear as shown below:

Build the Software Application

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 56 November 2010

6.8 Interact with the Software Application

Once you have the bemicro_led_control application running on the Nios II processor, you can interact with the demo
by using your keyboard to control the program flow.

6.9 Edit the Application

You can optionally modify the led_util.c source file to change the software such that the counting LEDs are inverted.

� Open the file led_util.c and locate the following subroutine:

update_ledg()

� In the beginning of the subroutine add the following line:
display_value = ~ display_value;

Once this is rebuilt, the application can be rerun to see the change in LEDs.

CONGRATULATIONS!!

You have just built the software application, downloaded it to the target and run the application

on the target.

Taking the Next Step

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 57 November 2010

Taking the Next Step

After you have sufficiently familiarized yourself with the embedded system development flow, you may want to add a
SOPC Builder system to your design.

If you are starting from scratch, a good idea is to purchase a Nios II development kit, which comes with pre-generated
Nios II processor systems to accelerate your development flow as well as the Nios II IP license.

If you already have a working project then you can add the SOPC builder system to your top level as a stub or even add
your design to the SOPC Builder system as a custom component.

Either way you will find plenty of resources to get your job done on Altera’s embedded resources at
www.altera.com/embedded

Purchase an evaluation or development kit

Embedded Development Kit Resources
http://www.altera.com/products/ip/processors/nios2/kits/ni2-dev_kits.html

Get more information about the Nios II Processor

 The Nios II Processor Reference Handbook
 http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

Get more information about the Nios II Software Development Tools

 The Nios II Software Developers Handbook
 http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

Get more information about Embedded System Design

 Embedded Design Guide
 http://www.altera.com/literature/hb/nios2/edh_ed_handbook.pdf

Get more information about SOPC Builder and Embedded IP Peripherals

 SOPC Builder (Quartus II) Handbook
 http://www.altera.com/literature/lit-sop.jsp

Taking the Next Step

Altera Corporation &. BeMicro SDK Embedded System Lab
Arrow Electronics, Inc 58 November 2010

Get Ready made Nios II Processor System Design Examples and Software Applications

 Nios II Design Examples page
 http://www.altera.com/support/examples/nios2/exm-nios2.html

Get Free Online Tutorials or take an In person training course

 Embedded Training Resources
 http://www.altera.com/technology/embedded/training/emb-training.html

Get support for your development by joining the Nios II User Community

 Nios II User Community
 http://www.altera.com/technology/embedded/community/emb-community.html

Get Technical Support from Altera

 Embedded Technical Support
 http://www.altera.com/technology/embedded/support/emb-support.html

For all resources visit www.altera.com/embedded

