Nios II

Nios II VGA Controller with DMA

User Guide

Introduction

The Nios II VGA Controller with DMA is an SOPC Builder component which can be added to any SOPC Builder system to provide VGA display capability.
The controller is capable of displaying the following resolutions:

· 640 x 480

· 800 x 600

· 1024 x 768

All resolutions can be displayed in either 16 or 24-bit color. Resolution and color depth settings are configurable in the VGA Controller configuration wizard in SOPC Builder.

The controller was designed for use with the Lancelot daughter card, available from Microtronix. The Lancelot card features a Texas Instruments THS8134 video digital to analog converter (DAC) with a VGA output connector, allowing display to a VGA monitor. Also on the card are two PS2 connectors and a 1/8”audio jack. The Lancelot card attaches to the prototype headers of Nios II development boards allowing it to be driven by FPGA pins. The card is available from Microtronix at:

http://www.microtronix.com/product_lancelot.html
Although the VGA controller component was designed for use with the Lancelot daughter card, it can be used with a Texas Instruments THS8134 DAC soldered directly to a board as well.
The VGA controller component also includes a HAL software driver. When the VGA controller is added to an SOPC Builder system, the HAL driver is automatically included in any software project which is built for that system in Nios II IDE. The driver supports all resolution modes and color depths without any code changes needed in the user’s application code. The driver also automatically handles buffer swaps when the controller is used in double-buffered mode.
Controller Architecture

The VGA controller is capable of reading video frames directly from memory via DMA, and driving the video DAC directly without any processor intervention. Once the controller is initialized, the only time that processor intervention is needed is when you want to display a new frame buffer at a different address.
The VGA controller contains five main logic blocks:

· Avalon slave port
Initialization and control
Contains the control registers

· Avalon read master
Reads video data from memory (DMA)

· Dual clock FIFO
Transfers video data between the system clock domain and the VGA clock domain.

· VGA signal sequencer
Formats the video data into the proper format for the THS8134 DAC.

· Data Width Converter

Converts 32-bit words of data into 16 or 24-bit pixels

See Figure 1 for a block diagram of the VGA Controller.

[image: image1]
Figure 1 – VGA Controller with DMA Block Diagram

Avalon Slave Port
The Avalon slave port is used to initialize, configure and control the operation of the VGA controller by reading and writing 4 32-bit control registers. The format of the registers is as follows:
	Offset
	Read/Write
	Function

	0x0
	R/W
	Slave Control Register

	0x4
	R/W
	DMA Source Register

	0x8
	R/W
	DMA Modulus Register

	0xC
	R
	Current Source Register

Slave Control Register

	31..1
	0

	Reserved
	Start

Start -
When this bit is set, the VGA Controller begins reading video data from the DMA source address and sending it to the video DAC

Reserved-
These bits are reserved for future use.

DMA Source Register

	31..0

	Base address of video frame to be displayed

This is the address where the beginning of the frame to be displayed is located. This register must be written with a valid value before starting the controller. It can also be re-written at any time with the address of a new frame buffer. When the controller finishes displaying the current frame, it will automatically begin displaying the new one.

DMA Modulus Register

	31..0

	Size in bytes of each frame buffer

The controller uses this register to know when it is finished reading a frame buffer. It must be written with a valid value before starting the controller.

Current Source Register

	31..0

	Base address of frame buffer

This is a read only register that contains the base address of the frame buffer presently being read and sent to the video DAC. Software may want to read this register before writing video data in order to make sure it is not writing to a frame buffer which is in the middle of being displayed. Writing to a frame buffer that is currently being displayed can cause artifacts and flickering in the video image.

Avalon Read Master

The Avalon read master reads video data from the address stored in the DMA Source Register. This block is essentially the DMA engine of the VGA controller. The read master reads data until it reaches the address stored in the DMA Modulus Register, then reloads the value in DMA Source Register and starts displaying another frame.

The read master will only read data when there is room in the FIFO to hold it, and when the controller has been enabled by the Start bit in the Slave Control register.
The read master always reads 32-bit words, regardless of the color depth of the actual video data. This allows the data to be read more efficiently, consuming less bandwidth (fewer cycles) of the frame buffer memory, which may be heavily used by the system. The 16 or 24-bit pixels are extracted from the 32-bit data by another logic block, the data width converter.
Dual Clock FIFO

The dual clock FIFO serves two purposes. First, it acts as the clock-domain bridge between the system clock and the VGA clock. Second, it serves as the controller DMA’s throttling mechanism. When the FIFO reaches a certain write threshold, it signals the DMA to stop writing data to it until the VGA sequencer makes some room by emptying some data from the FIFO and displaying it.
Additionally, if the system suddenly becomes very busy and access to the frame buffer memory is temporarily restricted, the FIFO stores enough video data for the VGA sequencer to continue displaying pixels until the frame buffer memory can again be read, at which point the FIFO is refilled.

The depth of the dual clock FIFO is configurable in the controller’s SOPC Builder component wizard.

VGA Signal Sequencer

This block ensures that the pixel and control signals driving the external video DAC conform to the proper timing constraints. Horizontal and Vertical sync signals are sent at various intervals, depending on which resolution mode the controller is displaying.

The VGA signal sequencer also controls reads from the dual clock FIFO.
Data Width Converter

Video data is always stored in the FIFO as 32-bit words. However, the video DAC requires 24 bit color inputs, 8 bits each for Red, Green, and Blue. The data width converter block is responsible for converting the 32-bit video data read from the FIFO into 24-bit pixels.

The VGA controller supports 3 color depth formats, 16-bit, 24-bit packed, and 24-bit unpacked. The data width converter can convert video data from 32-bit words to any of those depth formats.

16-bit color

This is the simplest of the color formats. Each 32-bit word read from the FIFO contains exactly two pixels. The width converter simply reads the FIFO once for every two pixels, then separates the pixels by splitting the 32-bit word in half. The 16-bit pixel data is then up-converted to the 24-bit color that the video DAC requires.

The advantages to this mode are that video data can be read quickly by the DMA since it can transfer two pixels per 32-bit transaction. The disadvantage of this mode is that only 65,536 colors can be represented.

24-bit unpacked color
This format is also fairly straight forward. Each 32-bit word read from the FIFO contains exactly one 24-bit pixel, and 8 unused bits. This means that for each pixel, 8 bits of memory are wasted. In this mode, the width converter reads one 32-bit word from the FIFO for every pixel, then throws away 8 bits.

The advantages of this mode are that 16,777,216 colors can be represented, and pixel-writing routines in software are simpler and faster than they are in 24-bit packed mode. The disadvantages of this mode are that a byte of memory is wasted for every pixel displayed. In systems with limited memory resources, this could be a significant issue.

24-bit packed color
This is the most complicated color depth mode of the three supported. Each pixel is stored in three consecutive bytes, and all pixels are stored contiguously in memory with no wasted space between them. That means for every three 32-bit words that are read from the FIFO, there exist four pixels. A given 32-bit word read from the FIFO could contain a full pixel, plus one byte from a neighboring pixel, or it could contain two bytes each from the two neighboring pixels. Furthermore, pixels can be spread across multiple 32-bit words, meaning the width converter must hold on to old data so it can reconstruct pixels from different 32-bit words. The width converter block accomplishes this by a sequence of multiplexing bytes from current and past words read from the FIFO. Luckily the user does not have to worry about any of this; the controller transparently extracts the correct pixels from the data stream.
The advantages of 24-bit packed mode are that 16,777,216 colors can be represented, and less memory is needed per frame than for 24-bit unpacked mode. The disadvantages are that pixel writing routines in software can be complicated and slow since each pixel must be written as a series of bytes, not one 32-bit word transaction.

Resolution Modes

The VGA controller supports three resolution modes, 640 x 480, 800 x 600, and 1024 x 768. The resolution mode of the controller is configurable in the VGA controller’s SOPC Builder component wizard.

The primary differences between these are the timing of the sync and control signals, and the clock speed that must be provided to the VGA signal sequencer. The sync signal timing is automatically handled by the VGA controller, but the user is responsible for providing a clock of the proper frequency to the VGA controller.
A signal named “vga_clk” exists at the top level of the VGA controller. When a system is generated in SOPC Builder, this signal will appear at the system’s top level. You must connect this signal to a clock of the correct frequency. A PLL can be used to provide this clock. The following table lists the clock frequencies needed for the different resolution modes.

	Resolution Mode
	Clock Frequency Required by VGA Controller

	640 x 480
	25 MHz

	800 x 600
	40 MHz

	1024 x 768
	65 MHz

Double Frame Buffers

The VGA controller and included driver both support using double frame buffers. This allows the VGA controller to display one frame buffer while the CPU constructs the next one. Double buffering prevents the flickering caused by displaying and writing to the same frame buffer simultaneously.
Using the VGA Controller in SOPC Builder

The following topics relate to instantiating and configuring the VGA Controller in SOPC Builder
SOPC Builder Component Wizard

The VGA Controller SOPC Builder component wizard is where most of the controller’s options are set. The following options are configurable in the VGA Controller SOPC Builder component wizard:

· Color Depth

16-bit

24-bit unpacked

24-bit packed

· DMA Transaction Types

Use Pipelined Reads

Use Bursting Reads (not yet supported)

· FIFO Depth
Represented in 32-bit words. Can be selected to be any even multiple of 2 from 128 to 65536.
· Resolution

640 x 480

800 x 600

1024 x 768

· Frame Buffer

Single Frame Buffer

Double Frame Buffer

Figure 2 shows the VGA Controller’s SOPC Builder component wizard

[image: image2.png]vea_controller,

Farametars

Color Depth
® t6bit Color

O 24bit Cobr packed)
O 24bit Color (urpacked)

DA Transaction Types
© Use Pipeined Reads

(© Use Bursting Reads (not currently supportec)
FIFO Depth
FIFO Depth (32-bt words): 096

Resolution (pvel):

© 640480 (251He VGA clock)
(@ B00x600 (400He YGA clock)
© 1024768 (65MHe VG dock)

Frame Buffer
O Singe Frame Buffer
@ Double Frame Buffer

Figure 2 – The VGA Controller SOPC Builder Component Wizard

Arbitration share settings in an SOPC Builder system

When using the VGA Controller in an SOPC Builder system, it is important that the read master port is given a large arbitration share for the memory(s) holding the frame buffers. This will help ensure that the VGA controller is never gets so starved for memory bandwidth that the FIFO becomes empty. If the FIFO becomes empty, the VGA sequencer will likely lose sync and will be unable to recover unless the controller is reset by disabling it, then re-enabling it.

Appendix A. Lancelot Nios II Development Board Pinouts
This table lists the pinouts for the Lancelot card on various Nios II Development boards.
	PROTO 1
	
	
	
	

	Lancelot signal
	proto1 pins
	1c20
	2c35
	2s60_ROHS

	B[0]
	11.27
	PIN_G14
	PIN_K18
	PIN_G2

	B[1]
	11.28
	PIN_H15
	PIN_K19
	PIN_H1

	B[2]
	11.29
	PIN_G18
	PIN_K23
	PIN_H2

	B[3]
	11.32
	PIN_H16
	PIN_J25
	PIN_K4

	B[4]
	11.31
	PIN_G17
	PIN_K24
	PIN_K3

	B[5]
	11.33
	PIN_H18
	PIN_J26
	PIN_J1

	B[6]
	11.36
	PIN_H19
	PIN_T23
	PIN_K1

	B[7]
	11.35
	PIN_H17
	PIN_M21
	PIN_J2

	G[0]
	11.3
	PIN_C18
	PIN_E25
	PIN_C1

	G[1]
	11.4
	PIN_C19
	PIN_F24
	PIN_C2

	G[2]
	11.5
	PIN_D18
	PIN_F23
	PIN_D2

	G[3]
	11.6
	PIN_D19
	PIN_J21
	PIN_D3

	G[4]
	11.7
	PIN_D17
	PIN_J20
	PIN_E1

	G[5]
	11.8
	PIN_D20
	PIN_F25
	PIN_E2

	G[6]
	11.9
	PIN_E17
	PIN_F26
	PIN_E3

	G[7]
	11.10
	PIN_F17
	PIN_N18
	PIN_E4

	M1
	12.11
	PIN_K15
	PIN_V26
	PIN_J5

	M2
	12.12
	PIN_W18
	PIN_V25
	PIN_J6

	R[0]
	11.25
	PIN_G19
	PIN_H26
	PIN_G1

	R[1]
	11.23
	PIN_G20
	PIN_H25
	PIN_J4

	R[2]
	11.21
	PIN_G15
	PIN_J24
	PIN_J3

	R[3]
	11.18
	PIN_G16
	PIN_J23
	PIN_H4

	R[4]
	11.17
	PIN_F20
	PIN_H24
	PIN_H3

	R[5]
	11.16
	PIN_F19
	PIN_H23
	PIN_G4

	R[6]
	11.15
	PIN_F15
	PIN_G26
	PIN_G3

	R[7]
	11.14
	PIN_F16
	PIN_G25
	PIN_F4

	blank_n
	11.13
	PIN_E19
	PIN_G24
	PIN_F3

	hsync
	11.37
	PIN_H20
	PIN_R17
	PIN_K2

	sync_n
	11.12
	PIN_E18
	PIN_G23
	PIN_F2

	sync_t
	11.11
	PIN_F18
	PIN_P18
	PIN_F1

	vsync
	11.39
	PIN_J16
	PIN_P17
	PIN_L2

	vga_clk
	13.11
	
	PIN_F21
	PIN_K6

	audio_right
	12.7
	PIN_H14
	PIN_R19
	PIN_G6

	audio_left
	12.5
	PIN_J19
	PIN_T17
	PIN_M1

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	PROTO 2
	
	
	
	

	Lancelot signal
	proto2 pins
	1c20
	2c35
	2S60_ROHS

	B[0]
	16.27
	PIN_T12
	PIN_AB20
	PIN_AA4

	B[1]
	16.28
	PIN_T11
	PIN_AC20
	PIN_AB3

	B[2]
	16.29
	PIN_W12
	PIN_AF20
	PIN_AB4

	B[3]
	16.32
	PIN_W8
	PIN_AD19
	PIN_AC3

	B[4]
	16.31
	PIN_Y12
	PIN_AE20
	PIN_AC2

	B[5]
	16.33
	PIN_Y8
	PIN_AC19
	PIN_AD1

	B[6]
	16.36
	PIN_V9
	PIN_AA18
	PIN_Y7

	B[7]
	16.35
	PIN_U9
	PIN_AA17
	PIN_AD2

	G[0]
	16.3
	PIN_T15
	PIN_AE24
	PIN_T2

	G[1]
	16.4
	PIN_W15
	PIN_T21
	PIN_T2

	G[2]
	16.5
	PIN_Y15
	PIN_V22
	PIN_U1

	G[3]
	16.6
	PIN_U15
	PIN_AF23
	PIN_U2

	G[4]
	16.7
	PIN_V15
	PIN_AE23
	PIN_V1

	G[5]
	16.8
	PIN_V14
	PIN_AC22
	PIN_V2

	G[6]
	16.9
	PIN_U14
	PIN_AB21
	PIN_W1

	G[7]
	16.10
	PIN_Y14
	PIN_AD23
	PIN_W2

	M1
	15.11
	PIN_V11
	PIN_Y16
	PIN_Y12

	M2
	15.12
	PIN_U11
	PIN_AC17
	PIN_AD11

	R[0]
	16.25
	PIN_U12
	PIN_AE21
	PIN_AA3

	R[1]
	16.23
	PIN_V12
	PIN_AF21
	PIN_Y4

	R[2]
	16.21
	PIN_T13
	PIN_U18
	PIN_Y3

	R[3]
	16.18
	PIN_R13
	PIN_U17
	PIN_W4

	R[4]
	16.17
	PIN_Y13
	PIN_W19
	PIN_W3

	R[5]
	16.16
	PIN_W13
	PIN_V18
	PIN_AB2

	R[6]
	16.15
	PIN_U13
	PIN_AE22
	PIN_AB1

	R[7]
	16.14
	PIN_V13
	PIN_AF22
	PIN_AA2

	blank_n
	16.13
	PIN_R14
	PIN_AD21
	PIN_AA1

	hsync
	16.37
	PIN_T9
	PIN_W17
	PIN_W9

	sync_n
	16.12
	PIN_T14
	PIN_AC21
	PIN_Y2

	sync_t
	16.11
	PIN_W14
	PIN_AD22
	PIN_Y1

	vsync
	16.39
	PIN_R9
	PIN_V17
	PIN_W10

	vga_clk
	17.11
	PIN_L8
	PIN_F20
	PIN_K7

	audio_right
	15.7
	PIN_U10
	PIN_AE19
	PIN_V12

	audio_left
	15.5
	PIN_W9
	PIN_AC18
	PIN_Y9

vga_clk_ext

sync_n

sync_t

blank_n

M1

M2

vsync

hsync

R

G

B

FIFO 32-Bits

Data Width Converter 32b-16b or 24b

fifo_read

write

used

VGA Sequencer

Avalon Read Master

address

wait_request

read_n

read_data

sys_clk

Avalon Slave

vga_clk_int

write_data

Double registers for meta-stability prevention

Threshold Logic

okay to read

okay to write

read_data

read_n

write_n

Control Registers

address

