Avalon Fast Downloader v1.0
2/11/2010

This is an advanced topic and it assumes that you are already familiar with JAVA, SOPC Builder, System Console, JTAG, and Altera’s Quartus® II design software.
Avalon Fast Downloader Overview

In a traditional Nios® II system, software is downloaded using the nios2-download utility. This software utilizes the debug core on the Nios II processor to download the ELF files into the target memory. The maximum throughput is ~50Kbytes/second. For users who have large ELF files, this can amount to several minutes of waiting for the download to complete. The Avalon Fast Downloader was created specifically to remedy this issue. The Avalon Fast Downloader (a.k.a. Fast Downloader) is composed of two parts. First, a custom JTAG interface component was created in Verilog. This component has an 8-bit Avalon Master interface so data can be read or written independent of the availability of a Nios II processor. Secondly, a software driver was created to enable System Console to recognize and control this interface as an IMemoryService. This is implemented as JAVA code. An included example piece of JAVA code shows how to utilize this interface for downloading ELF files. If you want to download something, simply change the JAVA code to implement what you want.

Why is the nios2-downloader so slow?

 The reason the download speed is so slow has to do with two main elements, the architecture of the Nios II debug core and the nature of USB communications. When data is downloaded using the Nios II debug core, the data to be written is stored in a small memory which is part of the debug core. This memory is only 1024 bytes in size. It contains Nios II code and data. The code is fairly simple, enabling the Nios II to move the data from the debug memory to the final memory mapped destination. The actual size left for the download data is around 512Bytes. This means that 1MB of data is chopped up into about 2000 transfers. Each transfer consists of moving that data as well as loading or touching other information in the debug core. This is where the USB standard works against us. Potentially, each time we use the USB to write data or check a status in the debug core, we incur a few milliseconds of delay to reacquire a time slot on the USB channel. As a result, nios2-downloader spends most of its time waiting for the USB.
How does the Fast Download overcome these delays?

The only real way to improve the download speed is to reduce the number of independent USB transactions required to move the data. One way to do this is to create a component which has a large buffer. However, memory resources are often fully utilized on an FPGA so creating a need for more of them is undesirable. Instead, the Fast Downloader does a bit of a cheat; it assumes that it can write to memory faster than the JTAG chain can provide the information. In general, this is not a problem, but there may be some corner cases. If we assume that the JTAG is clocking at its maximum speed of 10MHz, we need to write a byte at the rate of 1.2MHz. You would be hard pressed to find a memory that slow. There is some overhead in the hardware, so for margin sake, if we assumed worse case of 2MHz byte writes, that is still 50 clocks for each write in a system which runs 100MHz. The only time you may run into a problem is if the system is running and another master is taking all the memory bandwidth. The advantage of this method is that the entire stream of data is moved in one USB transaction.
Fast Downloader Hardware Verilog

The fast downloader hardware is composed of a Verilog file: “Avalon_Fast_Downloader.v” and the tcl hardware description “Avalon_Fast_Downloader_hw.tcl”. When these two files are place in the SOPC Builder component path, the Avalon_Fast_Donwloader will appear in the Component Library in SOPC Builder.
[image: image1.png]Fle Edt Mode System Vew Ioos Nosl Hep
System Corterts | System Generston
Compenert Lirary Target el ST
Project Device Famity| St I V| [eme Saurce iz
73 New companent e External 500
Library pilco pllco 000
Avelon Verification Sute piLet pllct Ho0o
Bettcro Componerts ez piLc2 ho0s v
= Bridges and Adepters
= Memory Mappert Use | Connections Modle Neme Descripton Clock Base End Tags Ra
Avelon M DDR Memary Hlt B w a
Avelon M Clock Crossing i — (Avelon Memery Mapped Save et 0x01200000 [ox01200012 T
Avelon i Peine Bridge 8 cpu ios llProcessar
Avelon i Tristete Eridge < instructon master | Avelon Memory Happec Master i _co
| dotamaster velon Memory Miappec Master 18 o 1x 31 e
TAG o Avalon Maste Eridge | oo debug_mode |Avslon Hemory Mapped Siave 0x02120000 [ox021207¢2
my_jag mster B ext flash_enet_bus |Avalon Tristte Ercige
P Stave to Avelon Measte Bri | avalon_siave (velon Memory Mapper Siave e
Streaming ————| vistte_master el errory Mapped Tristats aster
tertace Profocols B sye_cli timer Inerval Tiner
Legacy Comparerts s om0 \Avelon Wemary Happec Siave e 0x02120000 [ox02120812 4
Memories and Memory Cortrolers B oo e
Perihersls | controlsave \avelon Memary Happec Siave pilco 0x0212000 [0x021208m2
L & reconfig_request_pio IO (Paalel 10)
Processar adkitions s u (velon Wemory Mappe Siave e 0x02120020 [ox021208a2
Processors B ftag_uart \TAG UART
sts | avelon ftag_siave |Avalon Memary Mapped Siave pilco 0x0212000 [0x02120807 i
Video and Inage Processing & high_res_timer Inerval Tiner L]
s m (velon Wemory Wappe Siave e 0x02120020 [ox02120832 4
B ext flash Flsh Memory Inerface (CF)
— . velon Memory Mapped Tristate Save pil_c0 0x00000000 [ox00z££ccE
B lnvtern LANSICH 1 terface
— w velon Wemory Mapped Tristate Save pil_c0 0x02110000 fox0z12 2882 —f
B led_display Cheracter LCD
| controlsave (velon Memory Wappe Siave pilco 0x02120080 [ox0212086¢
8 urtt UART (S-232 Seril Por)
— (velon Memory Wapper Siave e 0x02120040 [ox02120852]
< > & button_pio IO (Paralel 10)
x — w (velon Memory Mappe Siave pilco 0x02120060 [ox0212086¢ —
I Sted 10 Dovalel 2
ew . = 4 v = [Addessue Fiter Default

/2 Warning: ddr_sdram_0: Ve pots namect write_elk (<1_export exgort and s1_export expart)
. Warring: ddr_sdram_0: Mutiple ports namect write_elk (51_export exgort and s1_export export)
(@ Ino: reconfig_request_pio: PO nputs arenat harcwirec intest bench, ncfinct valies wil b read from PIO nputs during simiaton
© info: ext_fash: Fash memory capacty: 15,0 MBytes (18777216 bytes).

(o] [

NI (=

[oorerae

At the heart of the Avalon Fast Downloader component is the megafunction sld_virtual_jtag.
www.altera.com/literature/ug/ug_virtualjtag.pdf
This megafunction allows you to connect your hardware directly to the JTAG chain. See the above link for further details. The sld_virtual_jtag component provides you with a set of control signals and an IR_in value and DR shift chain. The IR_in is the instruction register which gets loaded through JTAG and contains the mode/command information for the custom logic. In this case, the decoding is as follows:

IR_IN [3:0]
operation

description

0

LOOPBACK

simply wraps TDI to TDO

1

WRITE

write to memory

2

READ

read from memory

3

ADDRESS

set the start address

4

PRESET_ADDRESS

load a default value into the address

 register – used for jtag delay
 calculations.
The upper 4 bits of the IR_in signal are used to tell the logic how many states to wait before valid data is available on the TDI signal. This is not necessary if you only have one hardware device in the JTAG scan chain. If you have more than one device, you will need a delay of 1 for each device that precedes yours in the JTAG chain. Fortunately, the software driver can determine this for you automatically by reading and writing to the address register in the logic.

Another important concept is the clock crossing. Because all the signals coming from the sld_virtual_jtag are synchronized to the JTAG clock, part of the logic runs in JTAG clock domain while the other half must use the Avalon clock. All signals of the form *_av use the Avalon clock. JTAG signals which control the state of the state machine in the Avalon clock domain go through the standard Altera synchronizer “altera_std_synchronizer”. Other signals; IR_in, readdata, and writedata are stable for many clocks before they are used so the synchronizer is not strictly necessary. However, you will want to cut the paths on these signals in your SDC constraints file to remove any resulting errors.
The operation of the hardware is pretty straight forward. If the IR register is loaded with the LOOPBACK command, the JTAG TDI is connected to the TDO signal. So anything written to the device will simply be returned. The LOOPBACK command is never used by the software driver. The ADDRESS command tells the hardware that the incoming data on the TDI signal (DR chain) needs to be shifted into the local address register and concurrently, the current value of the address register will be shifted out to TDO. It is important to realize that access to the address register is destructive. Before any READ or WRITE operation, the address register should be updated with the correct address. During initial JTAG calibration, the driver writes/reads to the address register help determine any delays in the DR chain. The PRESET_ADDRESS command loads a known value into the address register so when it is read with the ADDRESS command, any delays in the read back path can be calculated. The address register is read and written msb first.
When the WRITE command is asserted, all data shifted in on the TDI will be formed into bytes and written one byte at a time to consecutive memory locations. The value of the address register will be incremented for each write. If not enough bits are received to complete a byte and the DR chain indicates it is done shifting data in, the partial byte will be discarded.

 The READ command instructs the hardware to perform Avalon reads. The actual Avalon read does not start until the DR chain starts shifting in bits. All bits shifted in during a READ are ignored. Because it takes time to read in the first value, the driver will always see a delay of two bytes. The first real data will be on byte three. This means that if you want to only read one byte, you will need to shift 24 bits. Another side effect is the Avalon master is always pre-reading the next value before it is being asked for. In general, this is not a problem; however, if you have hardware that is sensitive to reads, you may need to change the hardware and expand the address register to also include a 32 length field. Then the hardware could be changed to read just the number of bytes needed. In an effort to keep the size small and the design simple, this was not implemented. As with the WRITE command, the READ command will increment the address register.
The Verilog itself is fairly small and simple, and a few signals will be explained here for clarity.
byte_index – keeps a count of which bit in each byte is arriving.

jtag_source_valid – indicates to the state machine that the writedata register contains a full byte read to be written.

bytestream_started – indicates that the data coming in on the TDI signal is ready to be accepted as valid data.

jtag_sink_ready – flags that the last byte has just finished being transmitted and next_data_in_transit is being loaded with readdata from the Avalon side.

Instantiating the Fast Downloader in a SOPC Builder System

The Avalon Fast Downloader is a very generic master in SOPC Builder and should work seamlessly with any writable memory that supports byte enables. Because the Fast Downloader is only an 8-bit wide master, it will not properly write to registers which are wider than 8 bits. If the intent is to download code for the Nios II processor, you should assign the memories to appear at the same address for both the Nios II and the Fast Downloader.

Using the Example Code and Drivers

Installing the software drivers

In order to use the hardware with system-console or the example code, place the DownloadElf.jar and com.altera.systemconsole.Avalon_Fast_Downloader.jar in the C:\altera\91\quaruts\sopc_builder\model\lib directory. These files are in the zip file included with this doc.

System Console

After theses files are installed and the hardware is compiled and loaded into the board, launch system-console by opening a Nios II command shell. Then type

System-console

At the % prompt, type “get_service_paths master”

This will list all available masters on the JTAG chain:
% get_service_paths master

{/connections/USB-Blaster [USB-0]/EP2S60/[MFG:70 ID:34 INST:0 VER:3]} {/connections/USB-Blaster [USB-0]/EP2S60/[MFG:110 ID:133 INST:0 VER:0]} {/connections/USB-Blaster [USB-0]/EP2S60/[MFG:110 ID:134 INST:0 VER:0]}

In the case above, there are three masters. The first one is a Nios II processor and the last one is the Fast Downloader. The Fast Downloader always has an ID of 134 and a MFG of 110. To connect to the Fast Downloader, use the following command to choose the master.
% set jd_path [lindex [get_service_paths master] 2]

/connections/USB-Blaster [USB-0]/EP2S60/[MFG:110 ID:134 INST:0 VER:0]

The index for your board may differ depending on how many masters there are. Then finally open the service:

open_service master $jd_path

Now you can read and write like any other master associated with the system-console. Note that you do not normally want to access 32-bit registers with this master because it is only 8 bits wide.

The system-console documentation can be found at:

http://www.altera.com/literature/ug/ug_system_console.pdf
 The driver code and JAVA project are included, but a formal description are not. The JAVA API is changing slightly for Quartus II v10.0 so for this version of the paper, the driver will not be fully documented. The Quartus II v9.0 API is posted on the Nioswiki under “system console”. The driver consists of 4 files.
1. AvalonFastDownloaderMemroyService.java – This class takes care of all the detailed work of reading and writing through the Avalon Fast Downloader hardware. All the real work is done in the transmitBuffer routine.

2. AvalonFastDownloaderPlugin.java -- This class helps the system console to recognize that this is a plugin that needs to be included.

3. META-INF/services/com.altera.systemconsole.core.SystemPluginProvider – This file must contain the name of “com.altera.systemconsole.Avalon_Fast_Downloader.AvalonFastDownloaderPlugin.” so that this driver can be recognized as a plugin to system console.
4. AvalonFastDownloaderSLDNodeDiscovery.java – this class checks to see if the node in question is supported by this driver.

You are free to make changes to the driver or use this as an example for your own JTAG master. In Appendix A, the basic set up to the JAVA development environment is shown.

Using the example Code

DownloadElf.jar is an example piece of code which loads ELF files into a target system. It is launched from the Nios II command shell with the following command:

java –jar DownloadElf.jar <ELF file name> <options>.

If the DownloadElf.jar is not in the path you will need give the full path name. The DownloadElf code first tries to find if there is a Nios II present and halts it. By halting the Nios II, it can’t interfere with the download. Next, it looks for a Fast Downloader and opens it and begins downloading the ELF file unless the –hex or –vo options are specified. The ELF file name is never optional and must be present even if it is not used.
The options are described below.

-g
By default, the DownloadElf halts the processor before trying to download. This option forces the Nios II processor to start execution of the _start code found in the ELF file.

Default = off

-d
Turns on extra debug information.

Default = off

-v
Forces a verify after data has been downloaded.

Default = off

-vo
Only verifies and does not download the code.

Default = off

-device n
Specifies which physical device on the JTAG chain to target. Default =1

-o address
Specifies an offset that will be added to address specified in the ELF file. Address must be in hex

Default = 0x0

-ip instance
Specifies the Nios II instance number of the to reset and run.

Default = 0x0

-h
help screen

-p
includes a 16-byte header. The first 4 bytes are the destination address, and the next 4 bytes are size of the data. This is used in conjunction with the –o (offset) command to load the ELF somewhere else in memory. Nios II code could do something special with it.

Default = off

-hex address length
This command forces a read of memory at address and for length and dumps it into a hex file C:\test.hex. Address and length must be in hex. This command does not make use of the ELF file so it is a dummy variable.

Default = off

The source code for this example program is included and may be modified to suit individual needs. The basic flow of the code is as follows:
· Read in and verify command line options.

· Create a system console instance

· Open the file system

· Get all the JTAG nodes

· Search through the nodes for the Nios II instance that needs to be halted

· Search for the Fast Downloader nodes

· Instantiate the elfloader.

· Load ELF based on the options

· Close the Fast Downloader

· Close and start the Nios II
Future Features

Upcoming features for the next release of the Fast Downloader.

· CRC check

· Auto detection of read or write faults.

· SDC constraints file

· 500KBytes/sec download speed
Conclusion

The Fast Downloader is a piece of hardware and software that can speed software development time by reducing download times significantly for those projects which have a large code footprint. It is also an example of how you can write your own hardware and software to plug into the system-console.
APPENDIX A
Setting up the JAVA environment

To play with the driver or the example code, you must first download the latest Java development tools from sun and the eclipse IDE (optional).

http://java.sun.com
Download
Java SE Development Kit (JDK) 6 or

Java SE Development Kit (JDK) 6 and NetBeans IDE 6.7
Eclipse

http://eclipse.org
Download

Eclipse IDE for Java EE Developers (189 MB) or

Eclipse IDE for Java Developers (92 MB)
Below is a snapshot of how the Driver and example code DownloadElf were set up.
[image: image2.png]€ Java - Avalon, Fast_ Downloader, Driver/src/META-INFiservices/com,altera. systemconsole. core. SystemPluginProvider - Eclipse
Fle Edt Source Refactor Nevigate Search Project Run Window Help
o}/ $-0-Q- EHFG- SO e
1% Package Explorer 2 T Hierarchy = B [J] Downloadel java (3] AvalonFastbownloader (3] AvalonFastbownloader [com. altera.systemcon 5%
B&|e)
2# When using the JRE-based (Java Runtime Enviromment) service provider you
3# will want to have the com.altera.service.jre jar file in your classpath.

44 & file with this path will be scamned in each classpath location and the
54 contents are expected to have the name of a class that extends the api

& Avalon_Fast_Downloader_Driver
5@ s

=} com.altera.systemconsle. Avalon_Fast_Downloader
[3) avalonF astDownloaderttemoryService.java
[3) avalonFastDownloaderPlugin.java
[3) #wvalonF astDownloadersLDNodeDiscovery. java

= METATNE

@ services

6# provided in the class with the seme name as the file (in this case
74 com.altera.systemconsole.core. SystenPluginProvider .

a4
Scom.altera.systemconsole. Avalon Fast_Downloader.ivalonFastDownloaderPlugin

B IRE System Library [Javase-1.6]
) Referenced Libraries
() lon_ st Dowrloacer D rdesc
= & Downoadel
@8 s
= systemconsole.fast. downloader
15 Donrloacl ova
[£) bonrloade javacld
B IRE System Library [Javase-1.6]
) Referenced Libraries
) bowrlodek jdess
@ exanplephgn
& asdouroader
© sapt
Srest

i cutline is not avalable.

21 Problems | @ Javadoe [[8) Dedlretion | B Consale &2 ® % | B 58S

<terminated> DowrlosdElF [Java Applcation] C:{Program Fles\Javal res\binjavam.exe (Jan 5, 2010 4:46:44 Pi)

verified

0.016071 loaded of 2576KBytes

0.016071 loaded of 2576KBytes
verified

.601754 loaded of 2576KBytes

0.016071 loaded of 2576KBytes
verified

0.094605 loaded of 2576KBytes

.680318 loaded of 2576KBytes
verified

100.000000 loaded of 2576KBytes

elapsed time 21s

Tue Jan DS 16:47:08 HST 2010

Nios running

System Consale cleanly shutdown

I 3| @ I

comalera,systemcansole, core. SystemPluginProvider - Avalon_Fast_Dowrloader_Driver/src/META-INFlservices

The Java path needs to be configured like the following for Quartus II v9.1

[image: image3.png]& Properties for Avalon_Fast_Downloader_Driver

Resource
Bulders

Java Cade Style
Java Compler
JavaEdtor
Javadac Location
Project References
Refactoring History.
RunjDebug Settings
Task Repostory
Task Tags
valdation

wiText

Java By

Path

(# Source | 1 Projects | B Libraries | & Order and Export
4R and class folders an the buld path:

IEIEIEIEIEIEIEIEIEIEE

[com.altera.systemconsole. app.jar - Ci\akeral iquartus|sope_buiderimodellio

comalters.systemconsole.designs.jar - C:|akeraiatiquartus|sope_bulderimodelib
comalters.systemconsole.guija - Ciakeralgt|quartusisope_bulderimodellib
camalera,systemcansale.Jar - Criaterat31quartusisope_bulderimodelib
comalters.systemconsole.plugin.debugger.jar - C:|akeraiatiquartus|sope_buderimodelic
comalters.systemconsole. plugin.of ar - C:lakera|91\quartustsope_buider|modsHib
comalters.systemconsole. plugin g ar - Clakera|91\quartustsope_buider|modshib
comaters.systemconsole.plugin.memory.ja - Ciakeralg1|quartusisope_buiderimodefiib
comalters.systemconsole.plugin.pl ja - Ciakteralg1|quartusisope_bulderimodeflib
comalters.systemconsole. sripting.ja - C:akeralg1quartusisope_bulderimodeflib
cam.alera,systemcansale. transceivers. jar - Crlalterat31quartusisope_bulderimodelib
comaters.utities.jar - C:\akeraiatiquartus|sope_bulderimodelib

b - Clakeral31iquartustsape_buderimodel

= TRE System Library [JavasE-1.6]

Add JARs.
Add Externsl 1Rs.
Add yoriabe
dd Lbrary
‘Add Class Folder

‘dd External Class Folder

 The source and project files are all saved in the com_altera.systemconsole.Avalon_Fast_Downloader.jar. This jar must be in the altera/9.1/quartus/sopc_builder/model/lib directory.
In order for the System Console to automatically recognize your driver, you must have a META-INF folder in your src folder, and within that folder must be a services folder. In that folder must be one file with the name:

com.altera.systemconsole.core.SystemPluginProvider
The file must contain this line:
 com.altera.systemconsole.Avalon_Fast_Downloader.AvalonFastDownloaderPlugin
Version 1.0
Page 6 of 9

