
Simple Remote Update Example Design

Overview
The following design demonstrates how to use the ALTREMOTEUPDATE IP to trigger a

reconfiguration of the FPGA from a pre-programmed serial flash device. It does not include any

mechanism to update the flash device remotely (that is the subject of a future example, but you

could use this as the foundation). Most of this is basic stuff, using the ALTREMOTEUPDATE user

guide and application note AN603 as starting points.

The design and description has been targeted at the Cyclone V SoC Terasic development board fitted

with EPCQ256 flash, but it could be very easily retargeted to a different board. Only the basic

Cyclone V features have been used and none of the SoC portion has been used.

The following diagram gives a simple overview of the design.

Altera PLL
IP Catalogue
Component

LED_Flash
Custom

Component

ALTREMOTEUPDATE
IP Catalogue
Component

Drive_Remote_Update
Custom

State Machine

PARAM input
CONSTANT

Page_Select - “100”

DATA_IN input
CONSTANT

Application image address in
EPCQ - x“01000000”

Busy

Param

Reconfig

20MHz clock25MHz dev board
Clock input

Switch S6 input

LEDs

LED1 Top Level Architecture

The two photos below show the development board used with the key features highlighted for this

design:

 MSEL

 Switch S6 to trigger the reconfiguration process

 FPGA LEDs [3:0]

 Configuration Done LED

Design Description
This example uses two top-level designs:

 LED1 – the main “factory default” design, as detailed in the diagram in the overview. This

image has the reconfiguration IP that on a press of switch S6 reconfigures the FPGA with

application LED2. This design also flashes LEDS [1:0]

 LED2 – this is the “application” design that simply flashes the other two LEDs [3:2]. This does

not include any reconfiguration IP, although there is no reason why you could not add some

in.

As LED2 does not really do anything other than indicate a new image has been loaded, the

remainder of the description in this section is for LED1.

The main top-level for LED1 is LED1.vhd and it includes all of the component instantiations and a

simple state machine (Drive_Remote_Update) that drives the ALTREMOTEUPDATE IP.

Project settings
There are no specific or special project settings, apart from the Configuration Mode Setting; Look in

Assignments, Device, Device & Pin Options and then the Configuration tab – the Configuration Mode

setting must be REMOTE and not LOCAL for the remote update to work. Whilst you are here, also

check the correct configuration device is specified – in this case EPCQ256.

PLL
A PLL has been included because the design uses the 25MHz reference clock input provided by the

development board, but the ALTREMOTEUPDATE IP has a maximum recommended clock frequency

of 20MHz. The PLL takes 25MHz and generates 20MHz. Note – take care to get your reset polarity

correct for this IP component.

Driving the ALTREMOTEUPDATE IP
The design keeps this as basic as possible:

 The functionality is fixed – the IP is just set to reconfigure the FPGA from a fixed address in

the flash

 None of the status or reconfiguration error functionality is used. See AN603 for more details

as you can do a lot more with this IP that has been shown here.

To reconfigure the FPGA on detecting switch S6 is pressed a simple state machine was created. The

timing of the signals is described in application note AN603.

waitforbutton

reconfig ‘0’

param ‘0’

While S6 not
pressed

writeParam

param ‘1’

waitBusyHigh

param ‘0’

Write
reconfiguration
parameters

Wait to start the
reconfiguration
process

Wait for the IP Busy
signal to go high
and then low again,
indicating the
reconfiguration
parameters have
been successfully
written

Wait for IP
Busy signal
to go high

waitBusyLow

Wait for IP
Busy signal

to go low

reconfig

reconfig ‘1’ Start
reconfiguration of
FPGA

Creating and programming the EPCQ image
This example assumes that the EPCQ256 fitted to the development board is already configured with

two images, the factory default (LED1) and the application image (LED2). The expected location of

these images in the flash device is given below:

Factory Default Image
LED1

Application Image
LED2

Spare

Spare

Flash address 0x00000000

Flash address 0x01000000

The following describes how to take the two image .SOF files (LED1.sof and LED2.sof), create the

EPCQ image (.JIC) and finally how to program the .JIC into the flash.

Creating the .JIC file
Fire up mighty Quartus, and go to File, Convert Programming Files. The do the following:

 Select programming file type to be .JIC

 Select the EPCQ256 and specify an output file name

 In the “input Files to Convert’ GUI, click on the Flash Loader, and Add Device and select the

correct FPGA (5CSXFC6D6). This specifies the serial flash loader which will allow

programming of the flash device via the JTAG interface. This flash loader is a temporary

image and not a permanent part of your design.

 Now click SOF Data and add file, and select LED1.SOF.

 Then click Properties, and set the address mode to Start and select the base address in the

flash for this image to be 0x00000000. Select OK

 Finally, we need to add the second image, LED2.sof, so select Add SOF Page and repeat the

above for LED2.sof, but this time select the base address for this image to be 0x01000000.

 Before you hit Generate, your screen should look like the screenshot below. If it does, then

hoorah, and hit Generate to create the .JIC file.

Programming the .JIC into the EPCQ device
Depending on your revision of development board, you may have an un-cooperative MAX V image,

which will prevent you from programming the EPCQ from JTAG. If this occurs reprogram the MAX V

with the POF file included with this design (max_13_1_0.pof) – use the Quartus Programmer and

select the MAX V and the POF and program.

The other potential issue you might encounter could be unreliable programming of the .JIC into the

EPCQ. This can be caused by signal integrity issues on some earlier development boards, leading to

all sorts of erratic programming behaviour. The way around this is to lower the JTAG clock speed:

 Open an NIOS II Command Shell (there will be a link under you Altera installation)

 Confirm your current JTAG clock setting with the following command:

jtagconfig --getparam 1 JtagClock

 This will return a value, most probably 16M, or 16MHz.

 Set the JTAG clock frequency to a lower value, say 6MHz using the following command and

then confirm the change using the previous command.

jtagconfig --setparam 1 JtagClock 6M

 Programming should now be reliable – NOTE that you will have to make this change with

every power cycle of the board!

OK, so now we have everything setup OK to actually burn the .JIC into the EPCQ. Fire up the Quartus

programmer and auto detect the hardware. You should see the FPGA on the scan chain

(5CSXFC6D6). Right click on the FPGA, select Change File and select your .JIC file.

The programmer view will change slightly and you will now see the EPCQ256 connected to the FPGA.

In the top window, select Program/Configure (both the FPGA and the EPCQ should have a tick box

next to them) and hit Start. The programmer should then burn the .JIC into the EPCQ.

Testing on the dev board
If you have correctly programmed your EPCQ flash device…. On switching on the development board

you should now see the CONF done LED lit (see photo #1) and LEDs 1 and 0 slowly flashing (counting

up). This shows that image LED1 is running OK.

You can test the reconfiguration process by hitting user switch S6 (see photo #1) and after a short

while the CONF done LED should go off and then back on, but this time LEDs 3 and 2 should be

flashing (also counting but much faster); this indicates that image LED2 is running. i.e. image LED1

has reconfigured the FPGA with image LED2.

Now go and make yourself a nice cup of tea.

Files includes with the example
 LED1.QAR – the Quartus archive of the main project

 LED2.QAR – the Quartus archive of the application project (i.e. a basic LED flasher)

 MAX_13_1_0.pof – the MAX V image to use in case of JTAG programming issues with the

FPGA

 RemoteUpdateImage.JIC – the example .JIC which should just work on the development

board used for this example

