Using the A10 Pin Planning Design Project

This document will cover an A10 design which will enable the user to quickly develop an A10 pinout using some of the common IP’s that are used for Transceiver based systems. This includes the fundamental building block of the Native PHY, and other IP’s such as Hard PCIe (Gen 2 and Gen3) and the TSE(Triple Speed Ethernet) IP.
Background

Arria 10 designs now requires manual connections between PHY, Reset Controller and TXPLL (FPLL, ATX or CMU)
· 3 separate instantiations are required
[image: image1.png]o o

B wy





Adding a single channel to an example design requires you to
· Add 3 components
· Make ~20 connections
Scaling a single channel example design to a 16 channel design requires you to
· Add ~40 components.(if shared TX PLL, Reset controller) 
· Make ~60 connections.
This is cumbersome, prone to error, and RTL coding becomes confusing when separating out the channels.
We need a fast way to generate multiple channels and mix these with other protocols to meet a system specification. Firstly we must choose our device, and then plan out pinout for the left and right hand sides of the FPGA. In the next section I will go through in order the procedure a user should follow to successfully develop an A10 pinout.
Study available HSSI/PCIe channels in list
If you are developing an A10 design then you must firstly find out the available transceiver resources. This can be found out by navigating to the device setting dialog Box in Quartus II. The snapshot below shows the number of HSSI channel and PCIe HIP blocks available for the chosen device.
[image: image2.png]& Device

Select the famiy and device you want to target for compiation.
You can instal addtonal device support with the Install Devices command on the Tools menu.

Device famiy Showin‘Avalable devices Ist
Eamiy: [Aria 10 (X/SX/6T) v]  pedece: (A )
~] ot [any -]
Speed grace: (B )
Trget device
Name fiter:

Auto device selected by the Fitter
‘Spedfic device selected i Avaiable devices'list

Other: nfa
Avaiable devices:
Name CoreVoltage  AlMs  User1/0s
10AXOEHIF34I3SGES (it ;0590 604 2 2
10AX06EH4F34145GES (it :05%0 604 2 2
10AXD6EK2FST25GES (Intil) ;0540 564 E 2
10AXO6EKIFISIISGES (Intil) ;0540 564 E 2
10AXD6EK4F3ST45GES (Tntil) ;0540 564 % 2
10AX 1SN1F4012GES (it 2700 es0 ) 2
10AX 115N2F40125GES (it 2700 es0 ) 2
10AX 115NFF40I3SGES (it 2700 es0 ) 2
10AX 15N4F40145GES (it 2700 es0 ) 2
10AX115R2F40125GES (Advanced) 2700 es0 & 3
10AX 115RIF40I3SGES (Advanced) 2700 eso & 3
10AX 115R4F4014SGES (Advanced) 2700 650 & 3
I 7
10AX11552F 4ST25GES (Advanced) 2700 %0 ) 3
10AX11553F 4ST35GES (Advanced) 2700 %0 » 3
10AX11554F 45145GES (Advanced) 2700 960 ) 3
a v

[Moraton Devices...) 0 migration devices selected





Design set-up

The design contains the following building blocks

1) Native PHY IP (125MHz REFCLK and 2.5Gbps datarate)
2) CMU, ATX or FPLL option to clock either left or right hand side of device

3) ATX(xN) and FPLL(xN) option to clock either left or right hand side of device
The design is setup so that when you instantiate more than one channel it is always clocked by the same TXPLL. So for example if you generate 16 channels on the left hand side of the device and choose the FPLL(xN) left option then all channels will be clocked by this FPLL using the xN line clock network. If the user requires a more complex clocking scheme then the design can easily be modified to account for this.
Reminder on TXPLL usage

In this design there is a choice to use the CMU, ATX or FPLL to clock the transceivers

· Choose CMU, ATX, FPLL within sixpack
· Choose xN (ATX, FPLL) for outside sixpack (No CMU option)
A10 Pin Planning Design Concept

This design uses VHDL generics which pass parameters to scale the channels required for your system
We also need to think about
· Transmitter PLL(CMU, FPLL, ATX)
· REFCLK pin locations
· xN line clocking(clocking outside of a 6pack)
· Channels on Left and Right hand sides of the device
The VHDL code contained in the file fpga_top.vhd shows how easy it is to add the number of channels you require for your design. There is also an option to remove the IP from the compilation based on your system requirement and then feed in the correct TXPLL source for the transceiver channels.
Basic Transceiver channels will always be instantiated by default and this number is 1. However you can simply add or remove PCIe IP or TSE IP from the build by setting the boolean expression to false.
Example 1
If I want to add 1 instance of a PCIe Gen 3 x8 to my design on the left side but I don’t want any TSE IP’s on the left hand side of the device. The syntax would be 

ACTIVATE_PCIe_g3x8_L          : boolean:= true;

PCIe_g3x8_NUM_INSTANCES_L     : integer:= 1; -- The number 1 indicates 1 instance of x8 channels
ACTIVATE_TSE_L                : boolean:= false;

TSE_NUM_CHANNELS_L            : integer:= 1;
In the Example 2 below I require the following configuration for both the left and right hand sides of the device

Example 2
16 Basic channels

1 instance of PCIe Gen 3 x8

1 channel of TSE IP

Transceiver clocked by FPLL using xN line
You would then change the generics in the fpga_top.vhd file to look like 
[image: image3.png]entity fpga top is

generic

__ IEFT EAND SIDE CHANNELS
[SE5TC IOM CRANNELS L

ACTIVATE_ECTe_g2x1 L :
BCle_g2x1_NUM_INSTANCES_L : integer:= 1;

ACTIVATE_ECTe_g2xs L : boolean:= false;
BCle_g2x8_NUM_INSTANCES_L : integer:= 1;

ACTIVATE_ECTe g3x1 L
BCle_g3x1_NUM_INSTANCES_L

boolean:= false;
integer:

ACTIVATE_ECTe_g2x1 R :
BCIe_g2x1_NUM_INSTANCES_R : integer:= 1;

ACTIVATE_ECTe_g2xs R : boolean:
BCIe_g2x8_NUM_INSTANCES_R : integer:

ACTIVATE_ECTe_g3x1 R
BCle_g3x1_NUM_INSTANCES_R

boolean:
integer:





Guidelines Before Fitting
Place REFCLK pins for left(REF_CLK_L) and right(REF_CLK_R)  hand side of the chosen device to guide fitter. The fitter then understands how to separate the channels for the left and right hand sides.
Not every combination of a transceiver based design can be covered with one single project so for complex bonding schemes and a mixture of TX PLL’s the design will have to be adapted. Please read the appropriate section in the A10 handbook to understand the clocking schemes for your chosen device.
Pin Planner View 
Shown below is a typical view of the Pin planner after the channels have been placed.
[image: image4.png]Bottom View - Flip Chip
Artia 10 - 10AX115S 1F45I2SGES

S @év‘; (o]0}
©000VOVVV VYV
OVOO VEE’E\

<<}
?‘3%3%

)
&;
A RvrEcAcisamooae

<J
a

(o}

.@ @o@@%@%@@%@@@o%@)@@m
0000VOONIVOO®OVOOOOVX X \/\/

X@@@ (610]0]6) OVOORVEOD an

|

TEES2E2

- =
o ==
iy, -
@Vm@%@ M
(AN A
@%% i
et -
SOOVITOOA o
OOVO0





The reference design will be able to provide an indication of the Power consumed by the Transceivers
Benchmark
For the test provided in Example 2 the compilation time is around 45 mins!
Simulation Support
The design has been developed to include a basic simulation of the Receiver word aligning to a pattern sent by the transmitter.
· Covers only Basic Native PHY channels
· Pattern generator, Clock generator(alters REFCLK frequency)
· All channels loop Tx back to Rx via testbench
· PHY uses Automatic synchronizing state machine with 16 bit word aligner
· Ability to send 0xBCBC (K28.5) control character and then a PRBS pattern
· Full scripted and tested in Modelsim
· Simulation doesn’t cover PCIe or TSE
To run the simulation please navigate to the following directory in the A10 design

1) Navigate to ./SIMULATION directory

2) Open (master_script.tcl) in the ./SCRIPTS directory  and set QUARTUS_INSTALL_DIR variable to the location of your Quartus A10 software install.

3) Execute the script (master_script.tcl) which is found in the ./SCRIPTS directory  by selecting the following option in Modelsim. Tools ( TCL (. Execute Macro 

4) Type ld_debug

5) Simulation will load and you can add the signals for the Native PHY. Monitor rx_syncstatus and rx_patterndetect  for correct word alignment operation
End

